Catalog_No | Drug Name/ Product Name |
CAS | Product Line | Target | Path | Area | Citation | HY-10219 | Rapamycin | 53123-88-9 | Natural Products | Antibiotic; Autophagy; Bacterial; Endogenous Metabolite; FKBP; Fungal; mTOR | Anti-infection; Apoptosis; Autophagy; Immunology/ Inflammation; Metabolic Enzyme/Protease; PI3K/ Akt/mTOR | Cancer | [A1] [A2] [A3] [A4] |
HY-100558 | Bafilomycin A1 | 88899-55-2 | Natural Products | Antibiotic; Apoptosis; Autophagy; Bacterial; Proton Pump | Anti-infection; Apoptosis; Autophagy; Membrane Transporter/Ion Channel | Cancer; Infection | [B1] [B2] [B3] [B4] [B5] [B6] [B7] [B8] [B9] [B10] |
HY-18739 | Phorbol 12- myristate 13- acetate | 16561-29-8 | Natural Products | NF-κB; PKC; SphK | Epigenetics; Immunology/ Inflammation; NF-κB; TGF-beta/ Smad | Inflammation/ Immunology | [C1] [C2] [C3] [C4] [C5] [C6] [C7] |
HY-15142 | Doxorubicin (hydrochloride) | 25316-40-9 | Natural Products | ADC Cytotoxin; AMPK; Antibiotic; Apoptosis; Autophagy; Bacterial; HBV; HIV; Mitophagy; Topoisomerase | Antibody-drug Conjugate/ ADC Related; Anti-infection; Apoptosis; Autophagy; Cell Cycle/ DNA Damage; Epigenetics; PI3K/Akt/mTOR | Cancer; Infection | [D1] [D2] [D3] [D4] [D5] [D6] |
HY-19312 | 3-Methyladenine | 5142-23-4 | Natural Products | Autophagy; Endogenous Metabolite; Mitophagy; PI3K | Autophagy; Metabolic Enzyme/Protease; PI3K/Akt/ mTOR | Cancer | [E1] [E2] [E3] |
HY-W017018 | L-Ornithine (hydrochloride) | 3184-13-2 | Natural Products | Endogenous Metabolite | Metabolic Enzyme/ Protease | Metabolic Disease | [F1] [F2] |
HY-B0215 | Acetylcysteine | 616-91-1 | Natural Products | Apoptosis; Endogenous Metabolite; Ferroptosis; Influenza Virus; Reactive Oxygen Species | Anti-infection; Apoptosis; Immunology/Inflammation; Metabolic Enzyme/ Protease; NF-κB | Infection; Neurological Disease; Cancer | [G1] [G2] [G3] [G4] [G5] [G6] [G7] |
HY-B0389 | D-Glucose | 50-99-7 | Natural Products | Bacterial; Endogenous Metabolite | Anti-infection; Metabolic Enzyme/Protease | Metabolic Disease; Cancer | [H1] [H2] |
HY-N0682 | Pyridoxine (hydrochloride) | 58-56-0 | Natural Products | Endogenous Metabolite; Keap1- Nrf2 | Metabolic Enzyme/ Protease; NF-κB | Neurological Disease; Cancer | [I1] | HY-76082 | L-Pyroglutamic acid | 98-79-3 | Natural Products | Endogenous Metabolite | Metabolic Enzyme/ Protease | Others | HY-22306 | β-D-Glucose pentaacetate | 604-69-3 | Natural Products | Others | Others | Others | HY-B0300 | Penicillamine | 52-67-5 | Natural Products | Drug Metabolite | Metabolic Enzyme/ Protease | Inflammation/Immunology; Cancer | [J1] [J2] [J3] [J4] |
HY-B0941 | 6-Benzylaminopurine | 1214-39-7 | Natural Products | Endogenous Metabolite | Metabolic Enzyme/ Protease | Others | HY-77591 | Cysteamine (hydrochloride) | 156-57-0 | Natural Products | Apoptosis; Autophagy; Endogenous Metabolite; Reactive Oxygen Species | Apoptosis; Autophagy; Immunology/Inflammation; Metabolic Enzyme/Protease; NF-κB | Metabolic Disease; Cancer | [K1] [K2] |
HY-B0178A | Guanidine (hydrochloride) | 50-01-1 | Natural Products | Endogenous Metabolite | Metabolic Enzyme/Protease | Metabolic Disease; Cancer | [L1] [L2] [L3] [L4] |
HY-10219 | Rapamycin | 53123-88-9 | Natural Products | Antibiotic; Autophagy; Bacterial; Endogenous Metabolite; FKBP; Fungal; mTOR | Anti-infection; Apoptosis; Autophagy; Immunology/ Inflammation; Metabolic Enzyme/Protease; PI3K/ Akt/mTOR | Cancer | [M1] [M2] [M3] [M4] |
HY-19312 | 3-Methyladenine | 5142-23-4 | Natural Products | Autophagy; Endogenous Metabolite; Mitophagy; PI3K | Autophagy; Metabolic Enzyme/Protease; PI3K/ Akt/mTOR | Cancer | [N1] [N2] [N3] |
HY-18739 | Phorbol 12- myristate 13-acetate | 16561-29-8 | Natural Products | NF-κB; PKC; SphK | Epigenetics; Immunology/ Inflammation; NF-κB; TGF- beta/Smad | Inflammation/ Immunology | [O1] [O2] [O3] [O4] [O5] [O6] [O7] |
HY-15142 | Doxorubicin (hydrochloride) | 25316-40-9 | Natural Products | ADC Cytotoxin; AMPK; Antibiotic; Apoptosis; Autophagy; Bacterial; HBV; HIV; Mitophagy; Topoisomerase | Antibody-drug Conjugate/ ADC Related; Anti-infection; Apoptosis; Autophagy; Cell Cycle/DNA Damage; Epigenetics; PI3K/Akt/mTOR | Cancer; Infection | [P1] [P2] [P3] [P4] [P5] [P6] |
HY-100558 | Bafilomycin A1 | 88899-55-2 | Natural Products | Antibiotic; Apoptosis; Autophagy; Bacterial; Proton Pump | Anti-infection; Apoptosis; Autophagy; Membrane Transporter/Ion Channel | Cancer; Infection | [Q1] [Q2] [Q3] [Q4] [Q5] [Q6] [Q7] [Q8] [Q9] [Q10] |
HY-12320 | Cycloheximide | 66-81-9 | Natural Products | Antibiotic; Autophagy; DNA/ RNA Synthesis; Ferroptosis; Fungal | Anti-infection; Apoptosis; Autophagy; Cell Cycle/ DNA Damage | Infection; Cancer | HY-B0015 | Paclitaxel | 33069-62-4 | Natural Products | ADC Cytotoxin; Apoptosis; Autophagy; Microtubule/ Tubulin | Antibody-drug Conjugate/ ADC Related; Apoptosis; Autophagy; Cell Cycle/ DNA Damage; Cytoskeleton | Cancer | [R1] [R2] [R3] [R4] [R5] [R6] [R7] [R8] |
HY-B1743A | Puromycin (dihydrochloride) | 58-58-2 | Natural Products | Antibiotic; Bacterial; Parasite | Anti-infection | Infection | [S1] [S2] [S3] |
HY-B0215 | Acetylcysteine | 616-91-1 | Natural Products | Apoptosis; Endogenous Metabolite; Ferroptosis; Influenza Virus; Reactive Oxygen Species | Anti-infection; Apoptosis; Immunology/Inflammation; Metabolic Enzyme/Protease; NF-κB | Infection; Neurological Disease; Cancer | [T1] [T2] [T3] [T4] [T5] [T6] [T7] |
HY-15371 | Forskolin | 66575-29-9 | Natural Products | Adenylate Cyclase; Autophagy; FXR | Autophagy; GPCR/ G Protein; Metabolic Enzyme/Protease | Cancer; Endocrinology; Metabolic Disease; Inflammation/Immunology | [U1] [U2] [U3] [U4] [U5] [U6] [U7] [U8] |
HY-15141 | Staurosporine | 62996-74-1 | Natural Products | Antibiotic; Apoptosis; Bacterial; Fungal; PKA; PKC | Anti-infection; Apoptosis; Epigenetics; Stem Cell/ Wnt; TGF-beta/Smad | Cancer; Infection | [V1] [V2] [V3] [V4] [V5] |
HY-13966 | 2-Deoxy-D- glucose | 154-17-6 | Natural Products | Apoptosis; Hexokinase; HSV | Anti-infection; Apoptosis; Metabolic Enzyme/ Protease | Cancer | [W1] [W2] [W3] |
HY-17559 | Actinomycin D | 50-76-0 | Natural Products | Antibiotic; Apoptosis; Autophagy; Bacterial; DNA/ RNA Synthesis | Anti-infection; Apoptosis; Autophagy; Cell Cycle/ DNA Damage | Cancer; Infection | HY-17561 | G-418 (disulfate) | 108321-42-2 | Natural Products | Antibiotic; Bacterial | Anti-infection | Infection | [X1] [X2] [X3] [X4] |
HY-B2176 | ATP | 56-65-5 | Natural Products | Endogenous Metabolite | Metabolic Enzyme/ Protease | Metabolic Disease; Inflammation/Immunology | [Y1] [Y2] [Y3] [Y4] |
HY-14649 | Retinoic acid | 302-79-4 | Natural Products | Autophagy; Endogenous Metabolite; PPAR; RAR/RXR | Autophagy; Cell Cycle/ DNA Damage; Metabolic Enzyme/Protease; Vitamin D Related/Nuclear Receptor | Cancer | [Z1] [Z2] [Z3] [Z4] [Z5] [Z6] |
HY-B1756 | Rotenone | 83-79-4 | Natural Products | Apoptosis; Autophagy; Mitochondrial Metabolism | Apoptosis; Autophagy; Metabolic Enzyme/ Protease | Neurological Disease; Cancer | [A-A1] [A-A2] [A-A3] [A-A4] [A-A5] |
HY-15144 | Trichostatin A | 58880-19-6 | Natural Products | HDAC | Cell Cycle/DNA Damage; Epigenetics | Cancer | [B-B1] [B-B2] [B-B3] [B-B4] |
HY-13629 | Etoposide | 33419-42-0 | Natural Products | Antibiotic; Apoptosis; Autophagy; Bacterial; Mitophagy; Topoisomerase | Anti-infection; Apoptosis; Autophagy; Cell Cycle/ DNA Damage | Cancer; Infection | [C-C1] [C-C2] [C-C3] [C-C4] [C-C5] |
HY-B0579 | Cyclosporin A | 59865-13-3 | Natural Products | Antibiotic; Complement System; Molecular Glues; Phosphatase | Anti-infection; Immunology/ Inflammation; Metabolic Enzyme/Protease; PROTAC | Inflammation/Immunology; Cancer | [D-D1] [D-D2] [D-D3] [D-D4] [D-D5] [D-D6] [D-D7] [D-D8] |
HY-100381 | Nigericin (sodium salt) | 28643-80-3 | Natural Products | Antibiotic; Bacterial; NOD-like Receptor (NLR); Potassium Channel | Anti-infection; Immunology/ Inflammation; Membrane Transporter/Ion Channel | Cancer; Infection | [E-E1] [E-E2] [E-E3] [E-E4] |
HY-N0583 | Hydrocortisone | 50-23-7 | Natural Products | Endogenous Metabolite; Glucocorticoid Receptor | Immunology/Inflammation; Metabolic Enzyme/ Protease; Vitamin D Related/Nuclear Receptor | Inflammation/Immunology; Endocrinology; Cancer | [F-F1] [F-F2] [F-F3] |
HY-16592 | Brefeldin A | 20350-15-6 | Natural Products | Antibiotic; Autophagy; Bacterial; CRISPR/Cas9; HSV; Mitophagy | Anti-infection; Autophagy; Cell Cycle/DNA Damage | Cancer; Infection | [G-G1] [G-G2] [G-G3] [G-G4] [G-G5] [G-G6] [G-G7] |
HY-B0141 | Estradiol | 50-28-2 | Natural Products | Bacterial; Endogenous Metabolite; Estrogen Receptor/ ERR | Anti-infection; Metabolic Enzyme/Protease; Vitamin D Related/Nuclear Receptor | Endocrinology; Cancer | [H-H1] [H-H2] |
[A1]. Edwards SR, et al. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain. J Biol Chem, 2007, 282(18), 13395-13401.
[A2]. Rangaraju S, et al. Rapamycin activates autophagy and improves myelination in explant cultures from neuropathicmice. J Neurosci. 2010 Aug 25;30(34):11388-97.
[A3]. Niu H, et al. Rapamycin potentiates cytotoxicity by RP-56976 possibly through downregulation of Survivin in lung cancer cells. J Exp Clin Cancer Res. 2011 Mar 10;30:28.
[A4]. Zhang JW, et al. Metformin synergizes with rapamycin to inhibit the growth of pancreatic cancer in vitro and in vivo. Oncol Lett. 2018 Feb;15(2):1811-1816.
[B1]. Bowman EJ, et al. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988;85(21):7972-7976.
[B2]. Mauvezin C, et al. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy. 2015;11(8):1437-1438.
[B3]. Yuan N, et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 2015;100(3):345-356.
[B4]. Yoshimori T, et al. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991;266(26):17707-17712
[B5]. Yuan N, et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 2015 Mar;100(3):345-56.
[B6]. Lu X, et al. Bafilomycin A1 inhibits the growth and metastatic potential of the BEL-7402 liver cancer and HO-8910 ovarian cancer cell lines and induces alterations in their microRNA expression. Exp Ther Med. 2015 Nov;10(5):1829-1834.
[B7]. Ohkuma S, et al. Inhibition of cell growth by bafilomycin A1, a selective inhibitor of vacuolar H(+)-ATPase. In Vitro Cell Dev Biol Anim. 1993 Nov;29A(11):862-6.
[B8]. Ohta T, et al. Bafilomycin A1 induces apoptosis in the human pancreatic cancer cell line Capan-1. J Pathol. 1998 Jul;185(3):324-30.
[B9]. Cattani L, et al. Bafilomycin A1 and intracellular multiplication of Legionella pneumophila. Antimicrob Agents Chemother. 1997;41(1):212-214.
[B10]. Yuan N, et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 2015 Mar;100(3):345-56.
[C1]. Sergio E. Alvarez, et al. Autocrine and paracrine roles of sphingosine-1-phosphate. TRENDS in Endocrinology and Metabolism Vol.18 No.8
[C2]. Zhang T, et al. MPTP-Induced Depletion in Basolateral Amygdala via Decrease of D2R Activation Suppresses GABAA Receptors Expression and LTD Induction Leading to Anxiety-Like Behaviors. Front Mol Neurosci. 2017 Aug 7;10:247.
[C3]. Schwende H, et al. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol. 1996;59(4):555-561.
[C4]. Mugami S, et al. Differential roles of PKC isoforms (PKCs) and Ca2+ in GnRH and phorbol 12-myristate 13-acetate (PMA) stimulation of p38MAPK phosphorylation in immortalized gonadotrope cells. Mol Cell Endocrinol. 2017 Jan 5;439:141-154.
[C5]. Starr T, et al. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS One. 2018;13(3):e0193601. Published 2018 Mar 14.
[C6]. Hou S, et al. Mechanism of Mitochondrial Connexin43's Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci. 2016 May 5;17(5). pii: E679.
[C7]. Heng-Ching Wen, et al. PMA inhibits endothelial cell migration through activating the PKC-δ/Syk/NF-κB-mediated up-regulation of Thy-1. Sci Rep. 2018 Nov 2;8(1):16247.
[D1]. John L. Nitiss, et al. Targeting DNA topoisomerase II in cancer chemotherapy.Nat Rev Cancer. 2009 May;9(5):338-50.
[D2]. Hee-KyungRhee,et al. Synthesis, cytotoxicity, and DNA topoisomerase II inhibitory activity of benzofuroquinolinediones. Bioorg Med Chem. 2007 Feb 15;15(4):1651-8.
[D3]. P D Foglesong, et al. Doxorubicin inhibits human DNA topoisomerase I. Cancer Chemother Pharmacol. 1992;30(2):123-5.
[D4]. Nesstor Pilco-Ferreto, et al. Influence of doxorubicin on apoptosis and oxidative stress in breast cancer cell lines. Int J Oncol. 2016 Aug;49(2):753-62.
[D5]. Regine Lüpertz, et al. Dose- and time-dependent effects of doxorubicin on cytotoxicity, cell cycle and apoptotic cell death in human colon cancer cells. Toxicology. 2010 May 27;271(3):115-21.
[D6]. Penelope D Ottewell, et al. Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst. 2008 Aug 20;100(16):1167-78.
[E1]. Miller S, et al. Finding a fitting shoe for Cinderella: searching for an autophagy inhibitor. Autophagy. 2010 Aug;6(6):805-7.
[E2]. Hou H, et al. Inhibitors of phosphatidylinositol 3'-kinases promote mitotic cell death in HeLa cells. PLoS One. 2012;7(4):e35665.
[E3]. Wang X, et al. Acanthopanax versus 3-Methyladenine Ameliorates Sodium Taurocholate-Induced Severe Acute Pancreatitis by Inhibiting the Autophagic Pathway in Rats.Mediators Inflamm. 2016;2016:8369704.
[F1]. Demura S, et al. Effect of L-ornithine hydrochloride ingestion on intermittent maximal anaerobic cycle ergometer performance and fatigue recovery after exercise. Eur J Appl Physiol. 2011 Nov;111(11):2837-43.
[F2]. Shin S, et al. l-ornithine activates Ca2+ signaling to exert its protective function on human proximal tubular cells. Cell Signal. 2020 Mar;67:109484.
[G1]. Halasi M, et al. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem J. 2013 Sep 1;454(2):201-8.
[G2]. Ferrari G, et al. N-acetylcysteine (D- and L-stereoisomers) prevents apoptotic death of neuronal cells. J Neurosci. 1995 Apr;15(4):2857-66.
[G3]. Tsai JC, et al. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells. J Biol Chem. 1996 Feb 16;271(7):3667-70.
[G4]. Yan CY, et al. Prevention of PC12 cell death by N-acetylcysteine requires activation of the Ras pathway. J Neurosci. 1998 Jun 1;18(11):4042-9.
[G5]. Farr SA, et al. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem. 2003 Mar;84(5):1173-83.
[G6]. Kalimeris K, et al. N-acetylcysteine ameliorates liver injury in a rat model of intestinal ischemia reperfusion. J Surg Res. 2016 Dec;206(2):263-272.
[G7]. Garigliany MM, et al. N-acetylcysteine lacks universal inhibitory activity against influenza A viruses. J Negat Results Biomed. 2011 May 9;10:5.
[H1]. Jin Jiaojiao, et al. D-glucose, D-galactose, and D-lactose non-enzyme quantitative and qualitative analysis method based on Cu foam electrode. Food Chem. 2015 May 15;175:485-93.
[H2]. Ying Liu, et al. Podocyte-Released Migrasomes in Urine Serve as an Indicator for Early Podocyte Injury. Kidney Dis (Basel). 2020 Nov;6(6):422-433.
[I1]. Li C, et al. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Cell Mol Biol (Noisy-le-grand). 2018 Jul 30;64(10):119-124.
[J1]. Chen DB, et, al. Penicillamine increases free copper and enhances oxidative stress in the brain of toxic milk mice. PLoS One. 2012;7(5):e37709.
[J2]. Rahimi N, et, al. Effects of D-penicillamine on pentylenetetrazole-induced seizures in mice: involvement of nitric oxide/NMDA pathways. Epilepsy Behav. 2014 Oct;39:42-7.
[J3]. Masson MJ, et, al. Tolerance induced by low dose D-penicillamine in the brown Norway rat model of drug-induced autoimmunity is immune-mediated. Chem Res Toxicol. 2004 Jan;17(1):82-94.
[J4]. Ishak R, et, al. Penicillamine revisited: historic overview and review of the clinical uses and cutaneous adverse effects. Am J Clin Dermatol. 2013 Jun;14(3):223-33.
[K1]. Besouw, M., et al., Cysteamine: an old drug with new potential. Drug Discov Today, 2013. 18(15-16): p. 785-92.
[K2]. de Matos, D.G., et al., Effect of cysteamine on glutathione level and developmental capacity of bovine oocyte matured in vitro. Mol Reprod Dev, 1995. 42(4): p. 432-6.
[L1]. Y Hagihara, et al. Guanidine hydrochloride-induced folding of proteins. J Mol Biol. 1993 May 20;231(2):180-4.
[L2]. Saeed Emadi, et al. A comparative study on the aggregating effects of guanidine thiocyanate, guanidine hydrochloride and urea on lysozyme aggregation. Biochem Biophys Res Commun. 2014 Aug 8;450(4):1339-44.
[L3]. G Jung, et al. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr Microbiol. 2001 Jul;43(1):7-10.
[L4]. E C Herrmann Jr, et al. Prevention of death in mice infected with coxsackievirus A16 using guanidine HCl mixed with substituted benzimidazoles. Antiviral Res. 1982 Dec;2(6):339-46.
[M1]. Edwards SR, et al. The rapamycin-binding domain of the protein kinase mammalian target of rapamycin is a destabilizing domain. J Biol Chem, 2007, 282(18), 13395-13401.
[M2]. Rangaraju S, et al. Rapamycin activates autophagy and improves myelination in explant cultures from neuropathicmice. J Neurosci. 2010 Aug 25;30(34):11388-97.
[M3]. Niu H, et al. Rapamycin potentiates cytotoxicity by RP-56976 possibly through downregulation of Survivin in lung cancer cells. J Exp Clin Cancer Res. 2011 Mar 10;30:28.
[M4]. Zhang JW, et al. Metformin synergizes with rapamycin to inhibit the growth of pancreatic cancer in vitro and in vivo. Oncol Lett. 2018 Feb;15(2):1811-1816.
[N1]. Miller S, et al. Finding a fitting shoe for Cinderella: searching for an autophagy inhibitor. Autophagy. 2010 Aug;6(6):805-7.
[N2]. Hou H, et al. Inhibitors of phosphatidylinositol 3'-kinases promote mitotic cell death in HeLa cells. PLoS One. 2012;7(4):e35665.
[N3]. Wang X, et al. Acanthopanax versus 3-Methyladenine Ameliorates Sodium Taurocholate-Induced Severe Acute Pancreatitis by Inhibiting the Autophagic Pathway in Rats.Mediators Inflamm. 2016;2016:8369704.
[O1]. Sergio E. Alvarez, et al. Autocrine and paracrine roles of sphingosine-1-phosphate. TRENDS in Endocrinology and Metabolism Vol.18 No.8
[O2]. Zhang T, et al. MPTP-Induced Depletion in Basolateral Amygdala via Decrease of D2R Activation Suppresses GABAA Receptors Expression and LTD Induction Leading to Anxiety-Like Behaviors. Front Mol Neurosci. 2017 Aug 7;10:247.
[O3]. Schwende H, et al. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J Leukoc Biol. 1996;59(4):555-561.
[O4]. Mugami S, et al. Differential roles of PKC isoforms (PKCs) and Ca2+ in GnRH and phorbol 12-myristate 13-acetate (PMA) stimulation of p38MAPK phosphorylation in immortalized gonadotrope cells. Mol Cell Endocrinol. 2017 Jan 5;439:141-154.
[O5]. Starr T, et al. The phorbol 12-myristate-13-acetate differentiation protocol is critical to the interaction of THP-1 macrophages with Salmonella Typhimurium. PLoS One. 2018;13(3):e0193601. Published 2018 Mar 14.
[O6]. Hou S, et al. Mechanism of Mitochondrial Connexin43's Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury. Int J Mol Sci. 2016 May 5;17(5). pii: E679.
[O7]. Heng-Ching Wen, et al. PMA inhibits endothelial cell migration through activating the PKC-δ/Syk/NF-κB-mediated up-regulation of Thy-1. Sci Rep. 2018 Nov 2;8(1):16247.
[P1]. John L. Nitiss, et al. Targeting DNA topoisomerase II in cancer chemotherapy.Nat Rev Cancer. 2009 May;9(5):338-50.
[P2]. Hee-KyungRhee,et al. Synthesis, cytotoxicity, and DNA topoisomerase II inhibitory activity of benzofuroquinolinediones. Bioorg Med Chem. 2007 Feb 15;15(4):1651-8.
[P3]. P D Foglesong, et al. Doxorubicin inhibits human DNA topoisomerase I. Cancer Chemother Pharmacol. 1992;30(2):123-5.
[P4]. Nesstor Pilco-Ferreto, et al. Influence of doxorubicin on apoptosis and oxidative stress in breast cancer cell lines. Int J Oncol. 2016 Aug;49(2):753-62.
[P5]. Regine Lüpertz, et al. Dose- and time-dependent effects of doxorubicin on cytotoxicity, cell cycle and apoptotic cell death in human colon cancer cells. Toxicology. 2010 May 27;271(3):115-21.
[P6]. Penelope D Ottewell, et al. Antitumor effects of doxorubicin followed by zoledronic acid in a mouse model of breast cancer. J Natl Cancer Inst. 2008 Aug 20;100(16):1167-78.
[Q1]. Bowman EJ, et al. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proc Natl Acad Sci U S A. 1988;85(21):7972-7976.
[Q2]. Mauvezin C, et al. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy. 2015;11(8):1437-1438.
[Q3]. Yuan N, et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 2015;100(3):345-356.
[Q4]. Yoshimori T, et al. Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem. 1991;266(26):17707-17712
[Q5]. Yuan N, et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 2015 Mar;100(3):345-56.
[Q6]. Lu X, et al. Bafilomycin A1 inhibits the growth and metastatic potential of the BEL-7402 liver cancer and HO-8910 ovarian cancer cell lines and induces alterations in their microRNA expression. Exp Ther Med. 2015 Nov;10(5):1829-1834.
[Q7]. Ohkuma S, et al. Inhibition of cell growth by bafilomycin A1, a selective inhibitor of vacuolar H(+)-ATPase. In Vitro Cell Dev Biol Anim. 1993 Nov;29A(11):862-6.
[Q8]. Ohta T, et al. Bafilomycin A1 induces apoptosis in the human pancreatic cancer cell line Capan-1. J Pathol. 1998 Jul;185(3):324-30.
[Q9]. Cattani L, et al. Bafilomycin A1 and intracellular multiplication of Legionella pneumophila. Antimicrob Agents Chemother. 1997;41(1):212-214.
[Q10]. Yuan N, et al. Bafilomycin A1 targets both autophagy and apoptosis pathways in pediatric B-cell acute lymphoblastic leukemia. Haematologica. 2015 Mar;100(3):345-56.
[R1]. Choi YH, et al. Paclitaxel-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells. Oncol Rep. 2012 Dec;28(6):2163-9.
[R2]. Dziadyk JM, et al. Paclitaxel-induced apoptosis may occur without a prior G2/M-phase arrest. Anticancer Res. 2004 Jan-Feb;24(1):27-36.
[R3]. Li Q, et al. Low doses of paclitaxel enhance liver metastasis of breast cancer cells in the mouse model. FEBS J. 2016 Aug;283(15):2836-52.
[R4]. Pan Z, et al. Paclitaxel attenuates Bcl-2 resistance to apoptosis in breast cancer cells through an endoplasmic reticulum-mediated calciumrelease in a dosage dependent manner. Biochem Biophys Res Commun. 2013 Feb 13. pii: S0006-291X(13)00259-3.
[R5]. Cadamuro M, et al. Low dose paclitaxel reduces S100A4 nuclear import to inhibit invasion and hematogenous metastasis of cholangiocarcinoma. Cancer Res. 2016 Jun 21.
[R6]. Li Q, et al. Low doses of paclitaxel enhance liver metastasis of breast cancer cells in the mouse model. FEBS J. 2016 Jun 16.
[R7]. Yilmaz E, et al. Sensory neuron subpopulation-specific dysregulation of intracellular calcium in a rat model of chemotherapy-induced peripheral neuropathy. Neuroscience. 2015 Aug 6;300:210-8.
[R8]. Jing C, et al. E7080 enhances the antitumor effects of paclitaxel in anaplastic thyroid cancer. Am J Cancer Res. 2017 Apr 1;7(4):903-912.
[S1]. Nathans D, et al. Puromycin inhibition of protein synthesis: incorporation of puromycin intopeptide chains. Proc Natl Acad Sci U S A. 1964 Apr;51:585-92.
[S2]. Miyamoto-Sato E, et al. Specific bonding of puromycin to full-length protein at the C-terminus. Nucleic Acids Res. 2000 Mar 1;28(5):1176-82.
[S3]. Schmidt EK, et al. SUnSET, a nonradioactive method to monitor protein synthesis. Nat Methods. 2009 Apr;6(4):275-7.
[T1]. Halasi M, et al. ROS inhibitor N-acetyl-L-cysteine antagonizes the activity of proteasome inhibitors. Biochem J. 2013 Sep 1;454(2):201-8.
[T2]. Ferrari G, et al. N-acetylcysteine (D- and L-stereoisomers) prevents apoptotic death of neuronal cells. J Neurosci. 1995 Apr;15(4):2857-66.
[T3]. Tsai JC, et al. Induction of apoptosis by pyrrolidinedithiocarbamate and N-acetylcysteine in vascular smooth muscle cells. J Biol Chem. 1996 Feb 16;271(7):3667-70.
[T4]. Yan CY, et al. Prevention of PC12 cell death by N-acetylcysteine requires activation of the Ras pathway. J Neurosci. 1998 Jun 1;18(11):4042-9.
[T5]. Farr SA, et al. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem. 2003 Mar;84(5):1173-83.
[T6]. Kalimeris K, et al. N-acetylcysteine ameliorates liver injury in a rat model of intestinal ischemia reperfusion. J Surg Res. 2016 Dec;206(2):263-272.
[T7]. Garigliany MM, et al. N-acetylcysteine lacks universal inhibitory activity against influenza A viruses. J Negat Results Biomed. 2011 May 9;10:5.
[U1]. Robbins JD, et al. Forskolin carbamates: binding and activation studies with type I adenylyl cyclase. J Med Chem. 1996 Jul 5;39(14):2745-52.
[U2]. Matsumiya W, et al. Forskolin modifies retinal vascular development in Mrp4-knockout mice. Invest Ophthalmol Vis Sci. 2012 Dec 7;53(13):8029-35.
[U3]. Mayati A, et al. Functional polarization of human hepatoma HepaRG cells in response to forskolin. Sci Rep. 2018 Oct 31;8(1):16115.
[U4]. Awad JA, et al. Interactions of forskolin and adenylate cyclase. Effects on substrate kinetics and protection against inactivation by heat and N-ethylmaleimide. J Biol Chem. 1983 Mar 10;258(5):2960-5.
[U5]. Seamon KB, et al. Structure-activity relationships for activation of adenylate cyclase by the diterpene forskolin and its derivatives. J Med Chem. 1983 Mar;26(3):436-9.
[U6]. Ríos-Silva M, et al. Effect of chronic administration of forskolin on glycemia and oxidative stress in rats with and without experimental diabetes. Int J Med Sci. 2014 Mar 11;11(5):448-52.
[U7]. Rodriguez G, et al. Forskolin-inducible cAMP pathway negatively regulates T-cell proliferation by uncoupling the interleukin-2 receptor complex. J Biol Chem. 2013 Mar 8;288(10):7137-46.
[U8]. Amrita Datta, et al. High-throughput screening identified selective inhibitors of exosome biogenesis and secretion: A drug repurposing strategy for advanced cancer. Sci Rep. 2018 May 25;8(1):8161.
[V1]. Meggio F, et al. Different susceptibility of protein kinases to staurosporine inhibition. Kinetic studies and molecular bases for the resistance of protein kinase CK2. Eur J Biochem. 1995 Nov 15;234(1):317-22.
[V2]. Chae HJ, et al. Molecular mechanism of staurosporine-induced apoptosis in osteoblasts. Pharmacol Res. 2000 Oct;42(4):373-81.
[V3]. Yoshizawa S, et al. Tumor-promoting activity of staurosporine, a protein kinase inhibitor on mouse skin.Cancer Res. 1990 Aug 15;50(16):4974-8.
[V4]. Nabeshima T, et al. Staurosporine facilitates recovery from the basal forebrain-lesion-induced impairment of learning and deficit of cholinergic neuron in rats. J Pharmacol Exp Ther. 1991 May;257(2):562-6.
[V5]. Yujie Ren, et al. The ORF3a Protein of SARS-CoV-2 Induces Apoptosis in Cells. Cell Mol Immunol. 2020 Jun 18;1-3.
[W1]. Zhu Z, et al. 2-Deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res. 2005 Aug 1;65(15):7023-30.
[W2]. Ueyama A, et al. Nonradioisotope assay of glucose uptake activity in rat skeletal muscle using enzymatic measurement of 2-deoxyglucose 6-phosphate in vitro and in vivo. Biol Signals Recept. 2000 Sep-Oct;9(5):267-74.
[W3]. Miwa H, et al. Leukemia cells demonstrate a different metabolic perturbation provoked by 2-deoxyglucose. Oncol Rep. 2013 May;29(5):2053-7.
[X1]. Giordano-Santini R, et al. An antibiotic selection marker for nematode transgenesis. Nat Methods. 2010;7(9):721-723.
[X2]. Volarevic M, et al. A novel G418 conjugate results in targeted selection of genetically protected hepatocytes without bystander toxicity. Bioconjug Chem. 2007;18(6):1965-1971.
[X3]. Kwon KM, et al. Disialyl GD2 ganglioside suppresses ICAM-1-mediated invasiveness in human breast cancer MDA-MB231 cells. Int J Biol Sci. 2017;13(3):265-275. Published 2017 Feb 12.
[X4]. Davies J, et al. A new selective agent for eukaryotic cloning vectors. Am J Trop Med Hyg. 1980;29(5 Suppl):1089-1092.
[Y1]. Swennen EL, et al. Immunoregulatory effects of adenosine 5'-triphosphate on cytokine release from stimulated whole blood. Eur J Immunol. 2005 Mar;35(3):852-8.
[Y2]. M J L Bours, et al. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 2006 Nov;112(2):358-404.
[Y3]. Shuo Xu, et al. Doxycycline inhibits NAcht Leucine-rich repeat Protein 3 inflammasome activation and interleukin-1β production induced by Porphyromonas gingivalis-lipopolysaccharide and adenosine triphosphate in human gingival fibroblasts. Arch Oral Biol. 2019 Nov;107:104514.
[Y4]. Yang Xiang, et al. Adenosine-5'-Triphosphate (ATP) Protects Mice against Bacterial Infection by Activation of the NLRP3 Inflammasome. PLoS One. 2013; 8(5): e63759.
[Z1]. Wu L, et al. Retinoid X Receptor Agonists Upregulate Genes Responsible for the Biosynthesis of All-Trans-Retinoic Acid in Human Epidermis. PLoS One. 2016 Apr 14;11(4):e0153556.
[Z2]. Shaw N, et al. Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem. 2003 Oct 24;278(43):41589-92.
[Z3]. Yu S, et al. Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisomeproliferator-activated receptor β/δ (PPARβ/δ). J Biol Chem. 2012 Dec 7;287(50):42195-205.
[Z4]. Kam RK, et al. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci. 2012 Mar 22;2(1):11.
[Z5]. Apfel C, et al. A retinoic acid receptor alpha antagonist selectively counteracts retinoic acid effects. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7129-33.
[Z6]. Xiu Jun Wang, et al. Identification of retinoic acid as an inhibitor of transcription factor Nrf2 through activation of retinoic acid receptor alpha. Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19589-94.
[A-A1]. Khadrawy YA, et al. Cerebellar neurochemical and histopathological changes in rat model of Parkinson's disease induced by intrastriatal injection of rotenone. Gen Physiol Biophys. 2016 Nov 30.
[A-A2]. Guan Q, et al. RNA-Seq Expression Analysis of Enteric Neuron Cells with Rotenone Treatment and Prediction of Regulated Pathways. Neurochem Res. 2016 Nov 30.
[A-A3]. Kishore Kumar SN, et al. Morinda citrifolia mitigates rotenone-induced striatal neuronal loss in male Sprague-Dawley rats by preventing mitochondrial pathway of intrinsic apoptosis. Redox Rep. 2016 Nov 24:1-12.
[A-A4]. Zhang ZN, et al. Subcutaneous rotenone rat model of Parkinson's disease: dose exploration study. Brain Res. 2016 Nov 19. pii: S0006-8993(16)30776-4.
[A-A5]. Li N, et al. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem. 2003 Mar 7;278(10):8516-25.
[B-B1]. Vigushin DM et al. Trichostatin A is a histone deacetylase inhibitor with potent antitumor activity against breast cancer in vivo. Clin Cancer Res. 2001 Apr;7(4):971-6.
[B-B2]. Karolczak-Bayatti M, et al. Expression of the GTP-Binding Protein Gαs in Human Myometrial Cells is Regulated by Ubiquitination and Protein Degradation: Involvement of Proteasomal Inhibition by Trichostatin A.,Reprod Sci. 2012 Aug 8.
[B-B3]. Hu X, et al. Histone deacetylase inhibitor trichostatin A promotes the osteogenic differentiation of rat adipose-derived stem cells by altering the epigenetic modifications on Runx2 promoter in a BMP signaling-dependent manner.,Stem Cells Dev. 2012 Aug 8.
[B-B4]. Azechi T, et al. Trichostatin A, an HDAC class I/II inhibitor, promotes Pi-induced vascular calcification via up-regulation of the expression of alkaline phosphatase. J Atheroscler Thromb. 2013;20(6):538-47.
[C-C1]. Lee KI, et al. Etoposide induces pancreatic β-cells cytotoxicity via the JNK/ERK/GSK-3 signaling-mediated mitochondria-dependent apoptosis pathway. Toxicol In Vitro. 2016 Jul 26. pii: S0887-2333(16)30147-3.
[C-C2]. Calvani M, det al. Etoposide-Anti-Human VEGF a new strategy against human melanoma cells expressing stem-like traits. Oncotarget. 2016 Jun 9. doi: 10.18632/oncotarget.9939.
[C-C3]. Fuchs, J., et al. Comparative activity of NSC 119875, NSC 109724, NSC 123127, NSC 241240, and etoposide in heterotransplanted hepatoblastoma. Cancer, 1998. 83(11): p. 2400-7.
[C-C4]. Hande KR, et al. The Importance of Drug Scheduling in Cancer Chemotherapy: Etoposide as an Example. Oncologist. 1996;1(4):234-239.
[C-C5]. Cui D, et al. FBXW7 Confers Radiation Survival by Targeting p53 for Degradation.Cell Rep. 2020 Jan 14;30(2):497-509.e4.
[D-D1]. Handschumacher RE, et al. Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science. 1984 Nov 2;226(4674):544-7.
[D-D2]. Liu J, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. 1991 Aug 23;66(4):807-15.
[D-D3]. Fruman DA, et al. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3686-90.
[D-D4]. Flanagan WM, et al. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature. 1991 Aug 29;352(6338):803-7.
[D-D5]. Nicolli A, et al. Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J Biol Chem. 1996 Jan 26;271(4):2185-92.
[D-D6]. Borel JF, et al. Effects of the new anti-lymphocytic peptide cyclosporin A in animals. Immunology. 1977 Jun;32(6):1017-25.
[D-D7]. Williams, R, et al. Randomised trial comparing FK506 and cyclosporin in prevention of liver allograft rejection. European FK506 Multicentre Liver Study Group. Lancet, 1994, 344(8920), 423-428.
[D-D8]. Dalmarco EM, et al. Cyclosporin A inhibits CD11a/CD18 adhesion molecules due to inhibition of TNFalpha and IL-1 beta levels in the mouse model of pleurisy induced by carrageenan. Cell Adh Migr. 2008 Oct-Dec;2(4):231-5.
[E-E1]. Yakisich JS, et al. Nigericin decreases the viability of multidrug-resistant cancer cells and lung tumorspheres and potentiates the effects of cardiac glycosides. Tumour Biol. 2017 Mar;39(3):1010428317694310
[E-E2]. Bissinger R, et al. Triggering of Suicidal Erythrocyte Death by the Antibiotic Ionophore Nigericin. Basic Clin Pharmacol Toxicol. 2016 May;118(5):381-9
[E-E3]. Deng CC, et al. Nigericin selectively targets cancer stem cells in nasopharyngeal carcinoma. Int J Biochem Cell Biol. 2013 Sep;45(9):1997-2006
[E-E4]. Zhou HM, et al. Suppression of colorectal cancer metastasis by nigericin through inhibition of epithelial-mesenchymal transition. World J Gastroenterol. 2012 Jun 7;18(21):2640-8
[F-F1]. Förster C, et al. Differential effects of hydrocortisone and TNFalpha on tight junction proteins in an in vitro model of the human blood-brain barrier. J Physiol. 2008 Apr 1;586(7):1937-49.
[F-F2]. Bellinghausen I, et al. Inhibition of human allergic T-cell responses by IL-10-treated dendritic cells: differences from hydrocortisone-treated dendritic cells. J Allergy Clin Immunol. 2001 Aug;108(2):242-9.
[F-F3]. Chappell D, et al. Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiology. 2007 Nov;107(5):776-84.
[G-G1]. Alvarez C, et al. Brefeldin A (BFA) disrupts the organization of the microtubule and the actin cytoskeletons. Eur J Cell Biol. 1999 Jan;78(1):1-14.
[G-G2]. Tseng CN, et al. Brefeldin A reduces anchorage-independent survival, cancer stem cell potential and migration of MDA-MB-231 human breast cancer cells. Molecules. 2014 Oct 29;19(11):17464-77.
[G-G3]. Wang J, et al. Erythroleukemia cells acquire an alternative mitophagy capability. Sci Rep. 2016 Apr 19;6:24641.
[G-G4]. Colanzi A, et al. Molecular mechanism and functional role of brefeldin A-mediated ADP-ribosylation of CtBP1/BARS. Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9794-9.
[G-G5]. Yu C, et al. Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 2015 Feb 5;16(2):142-7.
[G-G6]. Nozawa N, et al. Subcellular localization of herpes simplex virus type 1 UL51 protein and role of palmitoylation in Golgi apparatus targeting. J Virol. 2003 Mar;77(5):3204-16.
[G-G7]. Jensen HL, Rygaard J, Norrild B. A time-related study of Brefeldin A effects in HSV-1 infected cultured human fibroblasts. APMIS. 1995;103(7-8):530-539. doi:10.1111/j.1699-0463.1995.tb01402.x
[H-H1]. Elham Hasanzadeh. Defining the role of 17β-estradiol in human endometrial stem cells differentiation into neuron-like cells. Cell Biol Int. 2021 Jan;45(1):140-153.
[H-H2]. Yujiao Lu, et al. Neuron-Derived Estrogen Regulates Synaptic Plasticity and Memory. J Neurosci. 2019 Apr 10;39(15):2792-2809.
Life Technologies (India) Pvt Ltd. 306, Agarwal City Mall, opposite M2K Pitampura, Delhi-110034 (India) Tel # +91-11-4220-8000; 4220-8111; 4220-8222 Fax# +91-11-4220-8444, Mobile# +91-98105-21400 Email# customerservice@lifetechindia.com |