Catalog_No | Drug Name/ Product Name |
CAS | Product Line | Target | Path | Area | Citation |
HY-Y0873 | PEG300 | 25322-68-3 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [A1] [A2] [A3] [A4] [A5] |
HY-Y1888 | Corn oil | 8001-30-7 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [B1] [B2] [B3] [B4] [B5] |
HY-Y0320 | Dimethyl sulfoxide | 67-68-5 | Biochemical Assay Reagents | Bacterial | Anti-infection | Infection; Inflammation/ Immunology; Cancer | [C1] [C2] |
HY-Y1891 | Tween 80 | 9005-65-6 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [D1] [D2] [D3] [D4] |
HY-Y0873A | PEG400 | 25322-68-3 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [E1] [E2] [E3] |
HY-W007437 | 2-Naphthoic acid | 93-09-4 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | |
HY-41456 | Ethyl 2- cyano-2- (hydroxyimino) acetate | 3849-21-6 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | HY-75597 | 4-Aminophenylboronic acid pinacol ester | 214360-73-3 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | HY-W250123 | Dibutyl sulfide | 544-40-1 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | HY-17031 | SBE-β-CD | 182410-00-0 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [F1] [F2] |
HY-Y1890 | Cremophor EL | 61791-12-6 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [G1] | HY-D0837 | Imidazole | 288-32-4 | Biochemical Assay Reagents | Endogenous Metabolite | Metabolic Enzyme/Protease | Others | HY-76446 | (Carbethoxymethylene) triphenylphosphorane | 1099-45-2 | Biochemical Assay Reagents | Others | Others | Others | HY-Y1893 | Solutol HS-15 | 61909-81-7 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [H1] | HY-Y1045 | Tetrabutylammonium (hydrogensulfate) | 32503-27-8 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | HY-Y0344 | Sodium chloride,AR, 99.5% | 7647-14-5 | Biochemical Assay Reagents | Others | Others | Others | HY-76897 | 5-Bromo-2- chloropyrimidine | 32779-36-5 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | HY-D0187 | L-Glutathione reduced | 70-18-8 | Biochemical Assay Reagents | Endogenous Metabolite; Ferroptosis; Reactive Oxygen Species | Apoptosis; Immunology/ Inflammation; Metabolic Enzyme/Protease; NF-κB | Cancer; Inflammation/ Immunology; Neurological Disease; Cardiovascular Disease | [I1] | HY-40019 | 1-Boc-4- piperidone | 79099-07-3 | Biochemical Assay Reagents | Others | Others | Others | HY-W003995 | Ethyl 2-chloropyrimidine-5-carboxylate | 89793-12-4 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | HY-Y1092 | N,N-Dicyclohexy- lcarbodiimide(DCC) | 538-75-0 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | HY-Y1903 | Phosal 50 PG | 774594-96-6 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [J1] | HY-W013027 | 2-Amino-2-methy l-1-propanol | 124-68-5 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [K1] | HY-I0308 | 1-Methyl-1H- pyrazole-4-boronic acid pinacol ester | 761446-44-0 | Biochemical Assay Reagents | Others | Others | Others | HY-Y0100 | N,N'-Dimethyltri- methyleneurea | 7226-23-5 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | HY-W002271 | 6-Fluoroindole | 399-51-9 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | HY-W041892 | Dimethyl itaconate | 617-52-7 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | HY-Y1892 | Gelucire 44/14 | 121548-04-7 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [L1] | HY-101103 | HP-β-CD | 128446-35-5 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Cancer | [M1] [M2] |
HY-Y0873 | PEG300 | 25322-68-3 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [N1] [N2] [N3] [N4] [N5] |
HY-17031 | SBE-β-CD | 182410-00-0 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [O1] [O2] |
HY-Y1888 | Corn oil | 8001-30-7 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [P1] [P2] [P3] [P4] [P5] |
HY-Y1891 | Tween 80 | 9005-65-6 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [Q1] [Q2] [Q3] [Q4] |
HY-D1056 | Lipopolysaccharides | Biochemical Assay Reagents | Toll-like Receptor (TLR) | Immunology/ Inflammation | Inflammation/ Immunology | [R1] [R2] [R3] [R4] [R5] |
HY-Y0320 | Dimethyl sulfoxide | 67-68-5 | Biochemical Assay Reagents | Bacterial | Anti-infection | Infection; Inflammation/ Immunology; Cancer | [S1] [S2] |
HY-D1056 | Lipopolysaccharides | Biochemical Assay Reagents | Toll-like Receptor (TLR) | Immunology/ Inflammation | Inflammation/ Immunology | [T1] [T2] [T3] [T4] [T5] |
HY-Y0873 | PEG300 | 25322-68-3 | Biochemical Assay Reagents | Biochemical Assay Reagents | Others | Others | [U1] [U2] [U3] [U4] [U5] |
[A1]. J.Billingham, et al. Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite: An in situ study using ATR-FTIR. Volume 14, Issue 1, March 1997, Pages 19-34.
[A2]. Lee CC, et al. Structural basis of polyethylene glycol recognition by antibody. J Biomed Sci. 2020 Jan 7;27(1):12.
[A3]. Harris JM, et al. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003 Mar;2(3):214-21.
[A4]. Xiaoqin Wang, et al. Injectable silk-polyethylene glycol hydrogels. Acta Biomater. 2015 Jan;12:51-61.
[A5]. Ellen Weisberg, et al. Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias. Blood. 2007 Mar 1;109(5):2112-20.
[B1]. Hursting SD, et al. Inhibition of rat mononuclear cell leukemia by corn oil gavage: in vivo, in situ and immune competence studies. Carcinogenesis. 1994 Feb;15(2):193-9.
[B2]. Gilbertson JR, et al. Inhibition of growth of Morris hepatomas 7777 and 7800 by corn oil. Oncology. 1977;34(2):62-4.
[B3]. Jennifer S Hubbard, et al. Effects of Repeated Intraperitoneal Injection of Pharmaceutical-grade and Nonpharmaceutical-grade Corn Oil in Female C57BL/6J Mice. J Am Assoc Lab Anim Sci. 2017 Nov 1;56(6):779-785.
[B4]. Administration Of Drugs and Experimental Compounds in Mice and Rats
[B5]. Elisenda Alsina-Sanchis, et al. Intraperitoneal Oil Application Causes Local Inflammation with Depletion of Resident Peritoneal Macrophages. Mol Cancer Res. 2021 Feb;19(2):288-300.
[C1]. C F Brayton. Dimethyl sulfoxide (DMSO): a review. Cornell Vet. 1986 Jan;76(1):61-90.
[C2]. William F Rawls, et al. Dimethyl sulfoxide (DMSO) as intravesical therapy for interstitial cystitis/bladder pain syndrome: A review. Neurourol Urodyn. 2017 Sep;36(7):1677-1684.
[D1]. Brandl MT, et al. Effect of the surfactant tween 80 on the detachment and dispersal of Salmonella enterica serovar Thompson single cells and aggregates from cilantro leaves as revealed by image analysis. Appl Environ Microbiol. 2014 Aug;80(16):5037-42.
[D2]. Pan Y, et al. Pharmacokinetics study of ferulic acid in rats after oral administration of γ-oryzanol under combined use of Tween 80 by LC/MS/MS. Eur Rev Med Pharmacol Sci. 2014;18(2):143-50.
[D3]. C A Castro, et al.Behavioral effects of vehicles: DMSO, ethanol, Tween-20, Tween-80, and emulphor-620. Pharmacol Biochem Behav. 1995 Apr;50(4):521-6.
[D4]. Varma RK, Kaushal R, Junnarkar AY, et al. Polysorbate 80: a pharmacological study. Arzneimittelforschung. 1985;35(5):804-808.
[E1]. Hermansky SJ, et al. Effects of polyethylene glycol 400 (PEG 400) following 13 weeks of gavage treatment in Fischer-344 rats. Food Chem Toxicol. 1995 Feb;33(2):139-49.
[E2]. Xiaoqin Wang, et al. Injectable silk-polyethylene glycol hydrogels. Acta Biomater. 2015 Jan;12:51-61.
[E3]. Avital Beig, et al. Striking the Optimal Solubility-Permeability Balance in Oral Formulation Development for Lipophilic Drugs: Maximizing Carbamazepine Blood Levels. Mol Pharm. 2017 Jan 3;14(1):319-327.
[F1]. Fukuda M, et al.Influence of sulfobutyl ether beta-cyclodextrin (Captisol) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion.Int J Pharm. 2008 Feb 28;350(1-2):188-196
[F2]. Charman SA, et al. Alteration of the intravenous pharmacokinetics of a synthetic ozonide antimalarial in the presence of a modified cyclodextrin. J Pharm Sci. 2006 Feb;95(2):256-67.
[G1]. Kiss L, et al. Kinetic analysis of the toxicity of pharmaceutical excipients Cremophor EL and RH40 on endothelial and epithelial cells. J Pharm Sci. 2013 Apr;102(4):1173-81.
[H1]. Shubber S, et al. Mechanism of mucosal permeability enhancement of CriticalSorb (Solutol HS15) investigated in vitro in cell cultures. Pharm Res. 2015 Feb;32(2):516-27.
[I1]. Pereira-Rodrigues N, et al. Electrocatalytic activity of cobalt phthalocyanine CoPc adsorbed on a graphite electrode for the oxidation of reduced L-glutathione (GSH) and the reduction of its disulfide (GSSG) at physiological pH. Bioelectrochemistry. 2007 Jan;70(1):147-54.
[J1]. Khani S, et al. Improved oral bioavalability of mebudipine upon administration in PhytoSolve and Phosal-based formulation (PBF). AAPS PharmSciTech. 2014 Feb;15(1):96-102.
[K1]. Hong NS, et al. Rapid and accurate determination of deoxyribonucleoside monophosphates from DNA using micellar electrokinetic chromatography with a cationic surfactant additive. Anal Bioanal Chem. 2011 Jun;400(7):2131-40.
[l1]. Zhang H, et al. Improvement of pulmonary absorptions of poorly absorbable drugs using Gelucire 44/14 as an absorption enhancer. J Pharm Pharmacol. 2014 Oct;66(10):1410-20.
[M1]. Song W, et al. 2-Hydroxypropyl-β-cyclodextrin promotes transcription factor EB-mediated activation of autophagy: implications for therapy. J Biol Chem. 2014 Apr 4;289(14):10211-22.
[M2]. Yokoo M, et al. 2-Hydroxypropyl-β-Cyclodextrin Acts as a Novel Anticancer Agent. PLoS One. 2015 Nov 4;10(11):e0141946.
[N1]. J.Billingham, et al. Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite: An in situ study using ATR-FTIR. Volume 14, Issue 1, March 1997, Pages 19-34.
[N2]. Lee CC, et al. Structural basis of polyethylene glycol recognition by antibody. J Biomed Sci. 2020 Jan 7;27(1):12.
[N3]. Harris JM, et al. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003 Mar;2(3):214-21.
[N4]. Xiaoqin Wang, et al. Injectable silk-polyethylene glycol hydrogels. Acta Biomater. 2015 Jan;12:51-61.
[N5]. Ellen Weisberg, et al. Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias. Blood. 2007 Mar 1;109(5):2112-20.
[O1]. Fukuda M, et al.Influence of sulfobutyl ether beta-cyclodextrin (Captisol) on the dissolution properties of a poorly soluble drug from extrudates prepared by hot-melt extrusion.Int J Pharm. 2008 Feb 28;350(1-2):188-196
[O2]. Charman SA, et al. Alteration of the intravenous pharmacokinetics of a synthetic ozonide antimalarial in the presence of a modified cyclodextrin. J Pharm Sci. 2006 Feb;95(2):256-67
[P1]. Hursting SD, et al. Inhibition of rat mononuclear cell leukemia by corn oil gavage: in vivo, in situ and immune competence studies. Carcinogenesis. 1994 Feb;15(2):193-9.
[P2]. Gilbertson JR, et al. Inhibition of growth of Morris hepatomas 7777 and 7800 by corn oil. Oncology. 1977;34(2):62-4.
[P3]. Jennifer S Hubbard, et al. Effects of Repeated Intraperitoneal Injection of Pharmaceutical-grade and Nonpharmaceutical-grade Corn Oil in Female C57BL/6J Mice. J Am Assoc Lab Anim Sci. 2017 Nov 1;56(6):779-785.
[P4]. Administration Of Drugs and Experimental Compounds in Mice and Rats
[P5]. Elisenda Alsina-Sanchis, et al. Intraperitoneal Oil Application Causes Local Inflammation with Depletion of Resident Peritoneal Macrophages. Mol Cancer Res. 2021 Feb;19(2):288-300.
[Q1]. Brandl MT, et al. Effect of the surfactant tween 80 on the detachment and dispersal of Salmonella enterica serovar Thompson single cells and aggregates from cilantro leaves as revealed by image analysis. Appl Environ Microbiol. 2014 Aug;80(16):5037-42.
[Q2]. Pan Y, et al. Pharmacokinetics study of ferulic acid in rats after oral administration of γ-oryzanol under combined use of Tween 80 by LC/MS/MS. Eur Rev Med Pharmacol Sci. 2014;18(2):143-50.
[Q3]. C A Castro, et al.Behavioral effects of vehicles: DMSO, ethanol, Tween-20, Tween-80, and emulphor-620. Pharmacol Biochem Behav. 1995 Apr;50(4):521-6.
[Q4]. Varma RK, Kaushal R, Junnarkar AY, et al. Polysorbate 80: a pharmacological study. Arzneimittelforschung. 1985;35(5):804-808.
[R1]. Kabanov DS, et al. Structural analysis of lipopolysaccharides from Gram-negative bacteria. Biochemistry (Mosc). 2010 Apr;75(4):383-404.
[R2]. Heinrichs DE, et al. Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol. 1998 Oct;30(2):221-32.
[R3]. Cai KC, et al. Age and sex differences in immune response following LPS treatment in mice. Brain Behav Immun. 2016 Nov;58:327-337.
[R4]. Ying Liu, et al. Podocyte-Released Migrasomes in Urine Serve as an Indicator for Early Podocyte Injury. Kidney Dis (Basel). 2020 Nov;6(6):422-433.
[R5]. Gayle DA, et al. Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res. 2002 Jan 31;133(1):27-35.
[S1]. C F Brayton. Dimethyl sulfoxide (DMSO): a review. Cornell Vet. 1986 Jan;76(1):61-90.
[S2]. William F Rawls, et al. Dimethyl sulfoxide (DMSO) as intravesical therapy for interstitial cystitis/bladder pain syndrome: A review. Neurourol Urodyn. 2017 Sep;36(7):1677-1684.
[T1]. Kabanov DS, et al. Structural analysis of lipopolysaccharides from Gram-negative bacteria. Biochemistry (Mosc). 2010 Apr;75(4):383-404.
[T2]. Heinrichs DE, et al. Molecular basis for structural diversity in the core regions of the lipopolysaccharides of Escherichia coli and Salmonella enterica. Mol Microbiol. 1998 Oct;30(2):221-32.
[T3]. Cai KC, et al. Age and sex differences in immune response following LPS treatment in mice. Brain Behav Immun. 2016 Nov;58:327-337.
[T4]. Ying Liu, et al. Podocyte-Released Migrasomes in Urine Serve as an Indicator for Early Podocyte Injury. Kidney Dis (Basel). 2020 Nov;6(6):422-433.
[T5]. Gayle DA, et al. Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res. 2002 Jan 31;133(1):27-35.
[U1]. J.Billingham, et al. Adsorption of polyamine, polyacrylic acid and polyethylene glycol on montmorillonite: An in situ study using ATR-FTIR. Volume 14, Issue 1, March 1997, Pages 19-34.
[U2]. Lee CC, et al. Structural basis of polyethylene glycol recognition by antibody. J Biomed Sci. 2020 Jan 7;27(1):12.
[U3]. Harris JM, et al. Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov. 2003 Mar;2(3):214-21.
[U4]. Xiaoqin Wang, et al. Injectable silk-polyethylene glycol hydrogels. Acta Biomater. 2015 Jan;12:51-61.
[U5]. Ellen Weisberg, et al. Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias. Blood. 2007 Mar 1;109(5):2112-20.
![]() |
Life Technologies (India) Pvt Ltd. 306, Agarwal City Mall, opposite M2K Pitampura, Delhi-110034 (India) Tel # +91-11-4220-8000; 4220-8111; 4220-8222 Fax# +91-11-4220-8444, Mobile# +91-98105-21400, Toll Free# 1800-120-2434 Email# customerservice@lifetechindia.com |