Enquiry E-CATALOGUE

Reference Compound

Catalog_No Drug Name/
Product Name
CAS Product Line Target Path Area Citation
HY-114153PLX56221303420-67-8Reference compoundc-FmsProtein Tyrosine
Kinase/RTK
Neurological
Disease
[A1]
[A2]
[A3]
[A4]
[A5]
[A6]
HY-114277Sotorasib2296729-00-3Reference compoundRasGPCR/G ProteinCancer[B1]
[B2]
[B3]
[B4]
HY-13631AExatecan (mesylate)169869-90-3Reference compoundADC Cytotoxin;
Topoisomerase
Antibody-drug
Conjugate/ADC Related;
Cell Cycle/
DNA Damage
Cancer[C1]
[C2]
[C3]
HY-134813MRTX11332621928-55-8Reference compoundRasGPCR/G ProteinCancer[D1]
HY-42487Exatecan Intermediate 1110351-94-5Reference compoundADC CytotoxinAntibody-drug
Conjugate/ADC
Related
Cancer[E1]
[E2]
HY-130149Adagrasib2326521-71-3Reference compoundRasGPCR/G ProteinCancer[F1]
[F2]
[F3]
[F4]
HY-14176Compound E209986-17-4Reference compoundγ-secretaseNeuronal
Signaling;
Stem Cell/
Wnt
Cancer[G1]
[G2]
HY-10162Olaparib763113-22-0Reference compoundAutophagy;
Mitophagy;
PARP
Autophagy;
Cell Cycle
/DNA Damage;
Epigenetics
Cancer[H1]
[H2]
[H3]
[H4]
HY-138687Nirmatrelvir2628280-40-8Reference compoundSARS-CoVAnti-infectionInfection;
Inflammation/
Immunology
[I1]
HY-16749Pexidartinib1029044-16-3Reference compoundApoptosis;
c-Fms; c-Kit
Apoptosis;
Protein
Tyrosine Kinase/
RTK
Cancer[J1]
[J2]
[J3]
[J4]
HY-125840Belzutifan1672668-24-4Reference compoundHIF/HIF Prolyl-
Hydroxylase
Metabolic Enzyme/ProteaseCancer[K1]
HY-10583Y-27632 (dihydrochloride)129830-38-2Reference compoundROCKCell Cycle/
DNA
Damage; Cytoskeleton;
Stem Cell/Wnt;
TGF-beta/
Smad
Cancer;
Neurological
Disease
[L1]
[L2]
[L3]
[L4]
HY-15531Venetoclax1257044-40-8Reference compoundAutophagy;
Bcl-2
Family
Apoptosis; AutophagyCancer[M1]
[M2]
[M3]
HY-15763Erastin571203-78-6Reference compoundFerroptosis; VDACApoptosis;
Membrane
Transporter/
Ion Channel
Cancer[N1]
[N2]
[N3]
HY-135853Molnupiravir2492423-29-5Reference compoundInfluenza
Virus;
SARS-
CoV
Anti-infectionInfection[O1]
[O2]
HY-15244Alpelisib1217486-61-7Reference compoundPI3KPI3K/Akt/mTORCancer[P1]
[P2]
[P3]
HY-100579Ferrostatin-1347174-05-4Reference compoundFerroptosis;
Fungal
Anti-infection;
Apoptosis
Cancer[Q1]
[Q2]
[Q3]
[Q4]
[Q5]
HY-454702-(2-Bromo-5-
chlorophenethoxy)
tetrahydro-2H-pyran
Reference compound
HY-10087Navitoclax923564-51-6Reference compoundBcl-2 FamilyApoptosisCancer[R1]
[R2]
[R3]
HY-16658BZ-VAD-FMK161401-82-7Reference compoundCaspaseApoptosisCancer[S1]
[S2]
HY-134836STM24572499663-01-1Reference compoundApoptosisApoptosisCancer[T1]
[T2]
HY-100218ARSL31219810-16-8Reference compoundFerroptosis;
Glutathione
Peroxidase
Apoptosis;
Metabolic
Enzyme/
Protease
Cancer[U1]
HY-17628Cefiderocol1225208-94-5Reference compoundAntibiotic;
Bacterial
Anti-infectionInfection[V1]
HY-13259MG-132133407-82-6Reference compoundApoptosis;
Autophagy;
Proteasome
Apoptosis;
Autophagy;
Metabolic Enzyme/
Protease
Cancer[W1]
[W2]
[W3]
[W4]
[W5]
[W6]
[W7]
[W8]
[W9]
HY-13992AP20187195514-80-8Reference compoundFKBPApoptosis;
Autophagy;
Immunology/
Inflammation
Metabolic
Disease
[X1]
[X2]
[X3]
HY-129602SD-362429877-44-9Reference compoundApoptosis;
PROTACs;
STAT
Apoptosis;
JAK/STAT
Signaling; PROTAC; Stem
Cell/Wnt
Cancer[Y1]
HY-12815AMCC950 (sodium)256373-96-3Reference compoundNOD-like
Receptor (NLR)
Immunology/
Inflammation
Inflammation/
Immunology
[Z1]
[Z2]
HY-B0717Tocofersolan9002-96-4Reference compoundOthersOthersMetabolic
Disease;
Neurological Disease
[A-A1]
[A-A2]
[A-A3]
HY-50856Ruxolitinib941678-49-5Reference compoundApoptosis;
Autophagy;
JAK; Mitophagy
Apoptosis;
Autophagy;
Epigenetics; JAK/
STAT
Signaling; Protein
Tyrosine
Kinase/
RTK; Stem
Cell/Wnt
Cancer[A-B1]
[A-B2]
[A-B3]
HY-100564A2',3'-cGAMP (sodium)Reference compoundEndogenous
Metabolite;
IFNAR; STING
Immunology/Inflammation;
Metabolic Enzyme/Protease
Metabolic
Disease
[A-C1]
HY-16069Tucatinib937263-43-9Reference compoundEGFRJAK/STAT
Signaling;
Protein Tyrosine
Kinase/RTK
Cancer[A-D1]
[A-D2]
[A-D3]
HY-15431Capivasertib1143532-39-1Reference compoundAkt;
Autophagy
Autophagy; PI3K/
Akt/mTOR
Cancer[A-E1]
HY-10182Laduviglusib252917-06-9Reference compoundAutophagy;
GSK-3;
Wnt; β-
catenin
Autophagy;
PI3K/
Akt/mTOR;
Stem Cell/
Wnt
Cancer;
Metabolic
Disease
[A-F1]
[A-F2]
[A-F3]
[A-F4]
[A-F5]
HY-112163Zotatifin2098191-53-6Reference compoundApoptosis;
Eukaryotic
Initiation
Factor (eIF); SARS-CoV
Anti-infection;
Apoptosis;
Cell Cycle/DNA
Damage
Cancer;
Infection
[A-G1]
[A-G2]
HY-13803Tazemetostat1403254-99-8Reference compoundHistone
Methyltransferase
EpigeneticsCancer
HY-117287Deucravacitinib1609392-27-9Reference compoundIFNAR;
Interleukin
Related; JAK
Epigenetics;
Immunology/
Inflammation; JAK/STAT
Signaling; Protein
Tyrosine
Kinase/RTK;
Stem Cell/
Wnt
Inflammation/
Immunology
[A-H1]
[A-H2]
HY-136175Revumenib2169919-21-3Reference compoundEpigenetic
Reader
Domain
EpigeneticsCancer[A-I1]
HY-13757ATamoxifen10540-29-1Reference compoundApoptosis;
Autophagy;
Estrogen Receptor/ERR; HSP
Apoptosis;
Autophagy;
Cell Cycle/DNA
Damage; Metabolic
Enzyme/
Protease;
Vitamin D
Related/Nuclear
Receptor
Cancer[A-j1]
[A-j2]
[A-j3]
[A-j4]
[A-j5]
[A-j6]
[A-j7]
HY-17006Caspofungin
(diacetate)
179463-17-3Reference compoundAntibiotic;
Bacterial;
Fungal
Anti-infectionInfection;
Cancer
[A-K1]
[A-K2]
HY-104077Remdesivir1809249-37-3Reference compoundDNA/RNA
Synthesis;
SARS-CoV
Anti-infection;
Cell Cycle/DNA
Damage
Infection[A-L1]
[A-L2]
[A-L3]
HY-141520ART5582603528-97-6Reference compoundDNA/RNA
Synthesis
Cell Cycle/DNA
Damage
Cancer[A-M1]
HY-70002Enzalutamide915087-33-1Reference compoundAndrogen
Receptor;
Autophagy
Autophagy;
Vitamin
D Related/Nuclear
Receptor
Cancer[A-N1]
[A-N2]
[A-N3]
[A-N4]
HY-15409Empagliflozin864070-44-0Reference compoundSGLTMembrane
Transporter
/Ion Channel
Metabolic
Disease
[A-O1]
[A-O2]
[A-O3]
[A-O4]
HY-W0602192-(7H-Pyrrolo
[2,3-d]
pyrimidin-4-yl)
isoindoline-
1,3-dione
741686-49-7Reference compound
HY-13030(+)-JQ-11268524-70-4Reference compoundAutophagy;
Epigenetic
Reader
Domain;
Ligands for
Target Protein
for
PROTAC
Autophagy;
Epigenetics;
PROTAC
Cancer[A-Q1]
[A-Q2]
[A-Q3]
HY-B0146Verteporfin129497-78-5Reference compoundApoptosis;
Autophagy;
YAP
Apoptosis;
Autophagy;
Stem
Cell/Wnt
Cancer[A-R1]
[A-R2]
[A-R3]
HY-280043-Bromo-6-
(difluoromethyl)
-2-ethoxypyridine
Reference compound
HY-100741S638451799633-27-4Reference compoundBcl-2 FamilyApoptosisCancer[A-S1]
HY-101562Inavolisib2060571-02-8Reference compoundApoptosis;
PI3K
Apoptosis;
PI3K/
Akt/mTOR
Cancer[A-T1]
HY-112185Orforglipron2212020-52-3Reference compoundGCGRGPCR/G ProteinMetabolic
Disease
[A-U1]
[A-U2]
HY-15605Encorafenib1269440-17-6Reference compoundRafMAPK/ERK
Pathway
Cancer[A-V1]
[A-V2]
HY-114177PF-068736002185857-97-8Reference compoundCDKCell Cycle/DNA DamageCancer[A-W1]
HY-129522Sulfo-ara-F-NMN1374663-29-2Reference compoundToll-like
Receptor (TLR)
Immunology/
Inflammation
Neurological
Disease
[A-X1]
HY-114231BExaluren
(disulfate)
2244622-33-9Reference compoundOthersOthersMetabolic
Disease
[A-Y1]
[A-Y2]
HY-132167Saruparib2589531-76-8Reference compoundPARPCell Cycle/
DNA
Damage;
Epigenetics
Cancer[A-Z1]
[A-Z2]
[A-Z3]
HY-112779Pertussis Toxin70323-44-3Reference compoundOthersOthersInfection
HY-132295Azenosertib2376146-48-2Reference compoundWee1Cell Cycle/DNA
Damage
Cancer[B-A1]
[B-A2]
HY-138642Vepdegestrant2229711-68-4Reference compoundEstrogen
Receptor/
ERR;
PROTACs
PROTAC;
Vitamin
D Related/
Nuclear
Receptor
Cancer[B-B1]
[B-B2]
[B-B3]
[B-B4]
HY-13442AEribulin
(mesylate)
441045-17-6Reference compoundApoptosis;
Microtubule/
Tubulin
Apoptosis; Cell
Cycle/DNA Damage;
Cytoskeleton
Cancer[B-C1]
HY-12885AADU-S100
(disodium salt)
1638750-95-4Reference compoundSTINGImmunology/
Inflammation
Inflammation/
Immunology;
Cancer
[B-D1]
[B-D2]
[B-D3]
HY-11109Resatorvid243984-11-4Reference compoundAutophagy;
Interleukin
Related; TNF
Receptor;
Toll-
like
Receptor (TLR)
Apoptosis;
Autophagy;
Immunology/
Inflammation
Inflammation/
Immunology;
Cancer
[B-E1]
[B-E2]
[B-E3]
[B-E4]
HY-50767Palbociclib571190-30-2Reference compoundCDKCell Cycle/
DNA Damage
Cancer[B-F1]
[B-F2]
[B-F3]
HY-12248Telaglenastat1439399-58-2Reference compoundAutophagy;
Glutaminase
Autophagy;
Metabolic
Enzyme/Protease
Cancer[B-G1]
[B-G2]
[B-G3]
HY-19930Vaborbactam1360457-46-0Reference compoundBacterialAnti-infectionInfection[B-H1]
[B-H2]
HY-138293SY-56092417302-07-7Reference compoundApoptosis;
CDK
Apoptosis;
Cell
Cycle/DNA
Damage
Cancer
HY-Y0437Cesium carbonate,99.9%534-17-8Reference compound
HY-Y1106Tripotassium phosphate7778-53-2Reference compound
HY-454702-(2-Bromo-5-
chlorophenethoxy)
tetrahydro
-2H-pyran
Reference compound
HY-45228(1H-Benzo[d][1,2,3]triazol-
1-yl)((3aR,4S,6R,6aR)-
6-methoxy-2,2-dimethyltetra-
hydrofuro[3,4-d][1,3]dioxol
-4-yl)methanol
Reference compound
HY-B0717Tocofersolan9002-96-4Reference compoundOthersOthersMetabolic
Disease;
Neurological
Disease
[B-I1]
[B-I2]
[B-I3]
HY-W0602192-(7H-Pyrrolo[2,3-d]
pyrimidin-
4-yl)isoindoline-
1,3-dione
741686-49-7Reference compound
HY-Y0196N,N'-Diisopropyl-
carbodiimide
(DIC)
693-13-0Reference compound
HY-Y1353Bis(tert-butoxycarbonyl)
oxide
24424-99-5Reference compound
HY-W004984Benzyl carbamate621-84-1Reference compound
HY-431566-Chloro-5
-nitro-2-
(2,2,2-trifluoroethoxy)
pyridin-
3-amine
2396769-77-8Reference compound
HY-W0101701,4-Difluoro-2-
nitrobenzene
364-74-9Reference compound
HY-345314,6-Dichloro-2-
methylpyrimidine
1780-26-3Reference compound
HY-E0023Column
chromatography
silica gel (reagent
grade)(100-200)
63231-67-4Reference compound
HY-100047(S)-2,2'-((5-
Amino-1-
carboxypentyl)
azanediyl)
diacetic acid
113231-05-3Reference compound
HY-Y04274,4'-Dimethoxytrityl
chloride
40615-36-9Reference compound
HY-Y1033Methyltriphenyl-
phosphonium
bromide
1779-49-3Reference compound
HY-W0677093-Chloro-4-
hydroxybenzoic
acid
3964-58-7Reference compound
HY-W014937(4-Hydroxyphenyl)
(phenyl)
methanone
1137-42-4Reference compound
HY-W007871Methyl 3-
chloro-4-
hydroxybenzoate
3964-57-6Reference compound
HY-107353Gadopentetic
acid
80529-93-7Reference compoundBiochemical
Assay
Reagents
OthersOthers[B-J1]
[B-J2]
HY-W088712Benzyl N6-(tert-
butoxycarbonyl)
-L-lysinate
hydrochloride
133170-57-7Reference compound
HY-W0358916-Fluoroquinoline-
2-carbaldehyde
260430-93-1Reference compound
HY-Y1703O-(7-Azabenzotriazol-
1-yl)-
N,N,N,N-tetramethyl
uronium
hexafluorophosphate
148893-10-1Reference compound
HY-B1770
Sodium Iodide,99%
7681-82-5Reference compound
HY-Y16662,2′-Dipyridyl
disulfide
2127-03-9Reference compoundBiochemical
Assay
Reagents
OthersOthers[B-K1]
HY-30105N-Boc-piperazine57260-71-6Reference compoundPROTAC
Linkers
PROTACCancer[B-L1]
HY-W011282(Diacetoxyiodo)
benzene
3240-34-4Reference compound
HY-106594APrussian
blue
insoluble
14038-43-8Reference compoundBacterialAnti-infectionCancer;
Infection;
Others
[B-M1]
[B-M2]
[B-M3]
[B-M4]
HY-66005Acetaminophen103-90-2Reference compoundBacterial;
COX;
Endogenous
Metabolite;
Histone
Acetyltransferase;
Parasite
Anti-infection;
Epigenetics;
Immunology/
Inflammation;
Metabolic
Enzyme/
Protease
Inflammation/
Immunology;
Cancer
[B-N1]
[B-N2]
[B-N3]
[B-N4]
HY-752174-Nitrophthalic acid610-27-5Reference compound
HY-Y0815Butane-1,2,3,4-
tetracarboxylic
acid
1703-58-8Reference compound
HY-W0104791,2-Oxathiolane
2,2-dioxide
1120-71-4Reference compound
HY-D0207Diisopropyl
azodicarboxylate
2446-83-5Reference compound
HY-B0342Meglumine6284-40-8Reference compoundBiochemical
Assay
Reagents
OthersCancer[B-O1]
[B-O2]
HY-114299Salcaprozate
(sodium)
203787-91-1Reference compoundOthersOthersOthers[B-P1]
[B-P2]
[B-P3]
HY-W076015Vanadium(IV)
bis(acetylacetonato)
oxide
3153-26-2Reference compound
HY-Y0623N-Hydroxysuccinimide6066-82-6Reference compound
HY-W0388862-(tert-Butyl)-
1,1,3,3-
tetramethylguanidine
29166-72-1Reference compound
HY-Y0373tert-Butyl
hydrazinoformate
870-46-2Reference compound
HY-W111244Phosphonitrili-
cchloridetrimer
940-71-6Reference compound
HY-W0131834,4,7,7-Tetraethoxy
-3,8-dioxa-
4,7-disiladecane
16068-37-4Reference compound
HY-W0609851-(Benzenesulfonyl)
-4-chloro-5-
nitro-1H-pyrrolo
[2,3-b]pyridine
1245649-52-8Reference compound
HY-Y0670Sodium
triacetoxyborohydride
56553-60-7Reference compound
HY-17589Chloroquine
(phosphate)
50-63-5Reference compoundAntibiotic;
Autophagy;
HIV;
Parasite; SARS-
CoV;
Toll-like
Receptor
(TLR)
Anti-infection;
Autophagy; Immunology/
Inflammation
Cancer;
Infection;
Inflammation/
Immunology
[B-Q1]
[B-Q2]
[B-Q3]
[B-Q4]
[B-Q5]
[B-Q6]
HY-E0024Column
chromatography
silica gel
(reagent grade)
(200-300)
63231-67-4Reference compound
HY-W0522791-Methyl-1H-
pyrazole-3-
carbonitrile
79080-39-0Reference compound
HY-Y0067[1,1'-Biphenyl]-4-
carboxylic
acid
92-92-2Reference compound
HY-W0482774-Bromo-3-
formylbenzonitrile
89003-95-2Reference compound
HY-W013149Lawesson's
Reagent
19172-47-5Reference compound
HY-13259MG-132133407-82-6Reference compoundApoptosis;
Autophagy;
Proteasome
Apoptosis;
Autophagy;
Metabolic
Enzyme/
Protease
Cancer[B-R1]
[B-R2]
[B-R3]
[B-R4]
[B-R5]
[B-R6]
[B-R7]
[B-R8]
[B-R9]
HY-100579Ferrostatin-1347174-05-4Reference compoundFerroptosis;
Fungal
Anti-infection;
Apoptosis
Cancer[B-S1]
[B-S2]
[B-S3]
[B-S4]
[B-S5]
HY-15763Erastin571203-78-6Reference compoundFerroptosis;
VDAC
Apoptosis;
Membrane
Transporter/Ion
Channel
Cancer[B-T1]
[B-T2]
[B-T3]
HY-17394Cisplatin15663-27-1Reference compoundAutophagy;
DNA
Alkylator/Crosslinker;
Ferroptosis
Apoptosis;
Autophagy;
Cell Cycle/DNA
Damage
Cancer[B-U1]
[B-U2]
[B-U3]
[B-U4]
[B-U5]
[B-U6]
HY-17589AChloroquine54-05-7Reference compoundAntibiotic;
Autophagy;
HIV; Parasite;
SARS-
CoV; Toll-
like Receptor
(TLR)
Anti-infection;
Autophagy;
Immunology/Inflammation
Cancer;
Infection;
Inflammation/
Immunology
[B-V1]
[B-V2]
[B-V3]
[B-V4]
[B-V5]
HY-100218ARSL31219810-16-8Reference compoundFerroptosis;
Glutathione
Peroxidase
Apoptosis;
Metabolic
Enzyme/Protease
Cancer[B-W1]
HY-10108LY294002154447-36-6Reference compoundApoptosis;
Autophagy;
Casein Kinase; DNA-
PK; PI3K
Apoptosis;
Autophagy;
Cell Cycle/DNA Damage;
PI3K/Akt/mTOR;
Stem
Cell/Wnt
Cancer;
Infection
[B-X1]
[B-X2]
[B-X3]
[B-X4]
[B-X5]
[B-X6]
HY-10162Olaparib763113-22-0Reference compoundAutophagy;
Mitophagy;
PARP
Autophagy; Cell
Cycle/DNA Damage;
Epigenetics
Cancer[B-Y1]
[B-Y2]
[B-Y3]
[B-Y4]
HY-10583Y-27632
(dihydrochloride)
129830-38-2Reference compoundROCKCell Cycle/DNA
Damage; Cytoskeleton;
Stem Cell/Wnt; TGF-
beta/Smad
Cancer;
Neurological
Disease
[B-Z1]
[B-Z2]
[B-Z3]
[B-Z4]
HY-13757ATamoxifen10540-29-1Reference compoundApoptosis;
Autophagy;
Estrogen
Receptor/
ERR; HSP
Apoptosis;
Autophagy;
Cell Cycle/DNA Damage;
Metabolic Enzyme/
Protease;
Vitamin D
Related/
Nuclear
Receptor
Cancer[C-A1]
[C-A2]
[C-A3]
[C-A4]
[C-A5]
[C-A6]
[C-A7]
HY-16658BZ-VAD-FMK161401-82-7Reference compoundCaspaseApoptosisCancer[C-B1]
[C-B2]
HY-14648Dexamethasone50-02-2Reference compoundAntibiotic;
Autophagy;
Bacterial; Complement
System; Glucocorticoid
Receptor; Mitophagy;
SARS-CoV
Anti-infection;
Autophagy;
Immunology/
Inflammation;
Vitamin D Related/
Nuclear
Receptor
Cancer;
Infection;
Endocrinology;
Inflammation
/Immunology
[C-C1]
[C-C2]
[C-C3]
[C-C4]
[C-C5]
[C-C6]
[C-C7]
HY-10182Laduviglusib252917-06-9Reference compoundAutophagy;
GSK-3; Wnt;
β-catenin
Autophagy;
PI3K/Akt/
mTOR; Stem Cell
/Wnt
Cancer;
Metabolic
Disease
[C-D1]
[C-D2]
[C-D3]
[C-D4]
[C-D5]
HY-10071Y-27632146986-50-7Reference compoundApoptosis;
ROCK
Apoptosis;
Cell Cycle/
DNA Damage; Cytoskeleton;
Stem
Cell/Wnt; TGF-beta/
Smad
Cancer[C-E1]
[C-E2]
[C-E3]
[C-E4]
[C-E5]
[C-E6]
[C-E7]
[C-E8]
HY-15531Venetoclax1257044-40-8Reference compoundAutophagy;
Bcl-2
Family
Apoptosis;
Autophagy
Cancer[C-F1]
[C-F2]
[C-F3]
HY-B0988Deferoxamine
(mesylate)
138-14-7Reference compoundAkt;
Apoptosis;
Autophagy;
HIF/HIF Prolyl-Hydroxylase;
Reactive
Oxygen
Species
Apoptosis;
Autophagy;
Immunology/
Inflammation;
Metabolic
Enzyme/
Protease; NF-κB;
PI3K/Akt/mTOR
Cancer;
Infection;
Metabolic
Disease;
Inflammation/
Immunology;
Neurological
Disease
[C-G1]
[C-G2]
[C-G3]
[C-G4]
[C-G5]
HY-10227Bortezomib179324-69-7Reference compoundApoptosis;
Autophagy;
NF-κB;
Proteasome
Apoptosis; Autophagy;
Metabolic Enzyme/
Protease; NF-κB
Cancer[C-H1]
[C-H2]
[C-H3]
[C-H4]
[C-H5]
[C-H6]
HY-13418ADorsomorphin866405-64-3Reference compoundAMPK;
Autophagy; TGF-
β Receptor
Autophagy;
Epigenetics;
PI3K/Akt/mTOR; TGF-
beta/
Smad
Cancer[C-I1]
[C-I2]
[C-I3]
[C-I4]
[C-I5]
HY-10431SB-431542301836-41-9Reference compoundApoptosis;
TGF-
β Receptor
Apoptosis; TGF-
beta/Smad
Cancer[C-J1]
[C-J2]
[C-J3]
HY-12815AMCC950
(sodium)
256373-96-3Reference compoundNOD-like
Receptor
(NLR)
Immunology/
Inflammation
Inflammation/
Immunology
[C-K1]
[C-K2]
HY-900065-Fluorouracil51-21-8Reference compoundApoptosis;
Endogenous
Metabolite; HIV;
Nucleoside
Antimetabolite/
Analog
Anti-infection;
Apoptosis;
Cell Cycle/DNA
Damage;
Metabolic
Enzyme/
Protease
Cancer[C-L1]
[C-L2]
[C-L3]
[C-L4]
[C-L5]
[C-L6]
[C-L7]
HY-10999Trametinib871700-17-3Reference compoundApoptosis;
Autophagy;
MEK
Apoptosis;
Autophagy;
MAPK/ERK
Pathway
Cancer[C-M1]
[C-M2]
[C-M3]
[C-M4]
[C-M5]
HY-17371Oxaliplatin61825-94-3Reference compoundApoptosis;
DNA/RNA
Synthesis
Apoptosis;
Cell Cycle/
DNA Damage
Cancer[C-N1]
[C-N2]
[C-N3]
[C-N4]
[C-N5]
[C-N6]
[C-N7]
[C-N8]
[C-N9}
HY-10201Sorafenib284461-73-0Reference compoundApoptosis;
Autophagy;
Ferroptosis;
FLT3; Raf;
VEGFR
Apoptosis;
Autophagy;
MAPK/ERK
Pathway; Protein
Tyrosine Kinase
/RTK
Cancer[C-O1]
[C-O2]
[C-O3]
[C-O4]
HY-10256Adezmapimod152121-47-6Reference compoundAutophagy;
Mitophagy;
p38 MAPK
Autophagy;
MAPK/
ERK Pathway
Inflammation
/Immunology;
Cancer
[C-P1]
[C-P2]
[C-P3]
HY-15760Necrostatin-14311-88-0Reference compoundAutophagy;
Ferroptosis;
Indoleamine 2,3-Dioxygenase
(IDO); RIP kinase
Apoptosis;
Autophagy;
Metabolic
Enzyme/
Protease
Cancer[C-Q1]
[C-Q2]
[C-Q3]
[C-Q4]
[C-Q5]
HY-114277Sotorasib2296729-00-3Reference compoundRasGPCR/G ProteinCancer[C-R1]
[C-R2]
[C-R3]
[C-R4]
HY-17364Temozolomide85622-93-1Reference compoundApoptosis;
Autophagy;
DNA
Alkylator/
Crosslinker
Apoptosis;
Autophagy;
Cell Cycle/
DNA
Damage
Cancer[C-S1]
[C-S2]
[C-S3]
HY-17026Gemcitabine95058-81-4Reference compoundApoptosis;
Autophagy;
DNA/RNA
Synthesis;
Nucleoside
Antimetabolite/
Analog
Apoptosis;
Autophagy;
Cell Cycle/
DNA
Damage
Cancer[C-T1]
[C-T2]
[C-T3]
[C-T4]
HY-100523ML385846557-71-9Reference compoundFerroptosis;
Keap1-
Nrf2
Apoptosis; NF-
κB
Cancer[C-U1]
[C-U2]
[C-U3]
HY-19363GW48696823-69-4Reference compoundPhospholipaseMetabolic
Enzyme/
Protease
Inflammation/
Immunology;
Cardiovascular
Disease
[C-V1]
[C-V2]
[C-V3]
[C-V4]
HY-11109Resatorvid243984-11-4Reference compoundAutophagy;
Interleukin
Related; TNF
Receptor;
Toll-like
Receptor (TLR)
Apoptosis;
Autophagy;
Immunology/
Inflammation
Inflammation/
Immunology;
Cancer
[C-W1]
[C-W2]
[C-W3]
HY-12041SP600125129-56-6Reference compoundApoptosis;
Autophagy;
Ferroptosis;
JNK
Apoptosis;
Autophagy;
MAPK/ERK
Pathway
Cancer[C-X1]
[C-X2]
[C-X3]
[C-X4]
[C-X5]
[C-X6]
HY-50767Palbociclib571190-30-2Reference compoundCDKCell Cycle/DNA
Damage
Cancer[C-Y1]
[C-Y2]
[C-Y3]
[C-Y4]
HY-15772Osimertinib1421373-65-0Reference compoundEGFRJAK/STAT
Signaling;
Protein Tyrosine
Kinase/RTK
Cancer[C-Z1]
[C-Z2]
HY-70002Enzalutamide915087-33-1Reference compoundAndrogen
Receptor;
Autophagy
Autophagy;
Vitamin
D Related/Nuclear
Receptor
Cancer[D-A1]
[D-A2]
[D-A3]
[D-A4]
HY-10087Navitoclax923564-51-6Reference compoundBcl-2 FamilyApoptosisCancer[D-B1]
[D-B2]
[D-B3]
HY-A0004Decitabine2353-33-5Reference compoundApoptosis;
DNA
Methyltransferase;
Nucleoside
Antimetabolite/
Analog
Apoptosis;
Cell
Cycle/DNA
Damage;
Epigenetics
Cancer[D-C1]
[D-C2]
[D-C3]
[D-C4]
[D-C5]
[D-C6]
[D-C7]
HY-105865-Azacytidine320-67-2Reference compoundAntibiotic;
Autophagy;
Bacterial; DNA
Methyltransferase; Nucleoside
Antimetabolite/
Analog
Anti-infection;
Autophagy;
Cell Cycle/DNA
Damage;
Epigenetics
Cancer;
Infection
[D-D1]
[D-D2]
[D-D3]
[D-D4]
HY-13030(+)-JQ-11268524-70-4Reference compoundAutophagy; Epigenetic
Reader Domain; Ligands
for Target Protein for
PROTAC
Autophagy;
Epigenetics;
PROTAC
Cancer[D-E1]
[D-E2]
[D-E3]
HY-10358MK-2206
(dihydrochloride)
1032350-13-2Reference compoundAkt;
Apoptosis;
Autophagy
Apoptosis;
Autophagy;
PI3K/Akt/mTOR
Cancer[D-F1]
[D-F2]
[D-F3]
[D-F4]
HY-50856Ruxolitinib941678-49-5Reference compoundApoptosis;
Autophagy;
JAK;
Mitophagy
Apoptosis;
Autophagy;
Epigenetics; JAK/STAT
Signaling; Protein Tyrosine
Kinase/RTK; Stem
Cell/Wnt
Cancer[D-G1]
[D-G2]
[D-G3]
HY-12028PD98059167869-21-8Reference compoundAryl
Hydrocarbon
Receptor;
Autophagy;
ERK; MEK
Autophagy; Immunology/
Inflammation; MAPK/
ERK Pathway; Stem
Cell/Wnt
Cancer[D-H1]
[D-H2]
[D-H3]
[D-H4]
[D-H5]
[D-H6]
[D-H7]
HY-12318IBMX28822-58-4Reference compoundPhosphodiesterase
(PDE)
Metabolic
Enzyme/
Protease
Inflammation/
Immunology
[D-I1]
[D-I2]
[D-I3]
[D-I4]
HY-B0146Verteporfin129497-78-5Reference compoundApoptosis;
Autophagy;
YAP
Apoptosis;
Autophagy;
Stem Cell/
Wnt
Cancer[D-J1]
[D-J2]
[D-J3]
HY-15886Mdivi-1338967-87-6Reference compoundApoptosis;
Autophagy;
Dynamin;
Mitophagy
Apoptosis;
Autophagy;
Cytoskeleton
Cancer[D-K1]
[D-K2]
[D-K3]
HY-B0627Metformin657-24-9Reference compoundAMPK;
Autophagy;
Mitophagy
Autophagy;
Epigenetics;
PI3K/Akt/mTOR
Cancer;
Metabolic
Disease; Cardiovascular
Disease
[D-L1]
[D-L2]
[D-L3]
[D-L4]
[D-L5]
HY-13027DAPT208255-80-5Reference compoundAmyloid-β;
Apoptosis;
Autophagy; Notch; γ-
secretase
Apoptosis;
Autophagy;
Neuronal
Signaling;
Stem Cell/
Wnt
Cancer;
Inflammation/
Immunology;
Neurological
Disease
[D-M1]
[D-M2]
[D-M3]
[D-M4]
[D-M5]
[D-M6]
[D-M7]
HY-50895Gefitinib184475-35-2Reference compoundApoptosis;
Autophagy;
EGFR
Apoptosis;
Autophagy;
JAK/STAT Signaling;
Protein
Tyrosine
Kinase/RTK
Cancer[D-N1]
[D-N2]
[D-N3]
[D-N4]
[D-N5]
[D-N6]
[D-N7]
HY-100941CCCP555-60-2Reference compoundApoptosis;
Bacterial;
IFNAR;
Mitochondrial
Metabolism;
STING
Anti-infection;
Apoptosis;
Immunology/
Inflammation;
Metabolic
Enzyme/
Protease
Cancer;
Inflammation/
Immunology
[D-O1]
[D-O2]
[D-O3]
[D-O4]
[D-O5]
HY-15244Alpelisib1217486-61-7Reference compoundPI3KPI3K/Akt/
mTOR
Cancer[D-P1]
[D-P2]
[D-P3]
HY-10432A 83-01909910-43-6Reference compoundTGF-β
Receptor
TGF-beta/SmadCancer[D-Q1]
[D-Q2]
[D-Q3]
HY-13453BAY 11-708219542-67-7Reference compoundApoptosis;
Autophagy;
Deubiquitinase;
IKK;
NF-
κB
Apoptosis;
Autophagy;
Cell Cycle/DNA
Damage; NF-κB
Cancer;
Inflammation/
Immunology
[D-R1]
[D-R2]
[D-R3]
[D-R4]
[D-R5]
[D-R6]
HY-17386Rosiglitazone122320-73-4Reference compoundApoptosis;
Autophagy;
Ferroptosis;
PPAR;
TRP Channel
Apoptosis;
Autophagy;
Cell Cycle/DNA
Damage;
Membrane
Transporter/
Ion Channel; Neuronal
Signaling; Vitamin
D Related/Nuclear
Receptor
Cancer;
Metabolic
Disease;
Inflammation/
Immunology;
Neurological Disease
[D-S1]
[D-S2]
[D-S3]
[D-S4]
[D-S5]
[D-S6]
[D-S7]
HY-N0565BDoxycycline
(hyclate)
24390-14-5Reference compoundAntibiotic;
Bacterial;
MMP;
Parasite
Anti-infection; Metabolic Enzyme/ProteaseCancer;
Infection
[D-T1]
[D-T2]
[D-T3]
[D-T4]
[D-T5]


[A1]. Spangenberg E, et al. Sustained microglial depletion with CSF1R inhibitor impairs parenchymal plaque development in an Alzheimer's disease model. Nat Commun. 2019 Aug 21;10(1):3758.
[A2]. Lee S, et al. Targeting macrophage and microglia activation with colony stimulating factor 1 receptor inhibitor is an effective strategy to treat injury-triggered neuropathic pain. Mol Pain. 2018 Jan-Dec;14:1744806918764979.
[A3]. Liu Y, et al. Concentration-dependent effects of CSF1R inhibitors on oligodendrocyte progenitor cells ex vivo and in vivo. Exp Neurol. 2019;318:32-41.
[A4]. Badimon A, et al. Negative feedback control of neuronal activity by microglia. Nature. 2020;586(7829):417-423.
[A5]. Andrew J. Riquier, et al. Astrocytic response to neural injury is larger during development than in adulthood and is not predicated upon the presence of microglia, Brain, Behavior, & Immunity-Health, Volume 1, 2020, 100010, ISSN 2666-3546.
[A6]. Spangenberg EE, et al. Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology. Brain. 2016;139(Pt 4):1265-1281.



[B1]. Marwan Fakih, et al, Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12Cinhibitor, in advanced solid tumors. Journal of Clinical Oncology.
[B2]. Karen Rex, et al. Abstract 3090: In vivo characterization of AMG 510 - a potent and selective KRASG12Ccovalent small molecule inhibitor in preclinical KRASG12Ccancer models. Experimental and Molecular Therapeutics.
[B3]. Canon J, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019 Nov;575(7781):217-223.
[B4]. Brian A. Lanman, et al.Abstract 4455: Discovery of AMG 510, a first-in-human covalent inhibitor of KRASG12C for the treatment of solid tumors. Cancer Chemistry.



[C1]. Mitsui I, et al. A new water-soluble camptothecin derivative, DX-8951f, exhibits potent antitumor activity against human tumors in vitro and in vivo. Jpn J Cancer Res. 1995 Aug;86(8):776-82.
[C2]. Sun FX, et al. Efficacy of camptothecin analog DX-8951f (Exatecan Mesylate) on human pancreatic cancer in an orthotopic metastatic model. Cancer Res. 2003 Jan 1;63(1):80-5.
[C3]. Joto N, et al. DX-8951f, a water-soluble camptothecin analog, exhibits potent antitumor activity against a human lung cancer cell line and its SN-38-resistant variant. Int J Cancer. 1997 Aug 7;72(4):680-6.



[D1]. Wang X, et al. Identification of MRTX1133, a Noncovalent, Potent, and Selective KRAS G12D Inhibitor [published online ahead of print, 2021 Dec 10]. J Med Chem. 2021;10.1021/acs.jmedchem.1c01688.



[E1]. Weng W, et al. Antibody-Exatecan Conjugates with a Novel Self-immolative Moiety Overcome Resistance in Colon and Lung Cancer. Cancer Discov. 2023 Apr 3;13(4):950-973.
[E2]. Zhang Hongwei, et al. Intermediate for synthesizing camptothecin derivatives using exatecan mesylate and its preparation method and application. China, CN111470998. 2020-07-31.



[F1]. Christensen JG, et al. The KRASG12C Inhibitor, MRTX849, Provides Insight Toward Therapeutic Susceptibility of KRAS Mutant Cancers in Mouse Models and Patients. Cancer Discov. 2019 Oct 28. pii: CD-19-1167.
[F2]. Kyriakos P. Papadopoulos, et al. A phase I/II multiple expansion cohort trial of MRTX849 in patients with advanced solid tumors with KRAS G12C mutation. Journal of Clinical Oncology 2019 37:15_suppl, TPS3161-TPS3161.
[F3]. Fell JB, Fischer JP, Baer BR, et al. Identification of the Clinical Development Candidate MRTX849, a Covalent KRASG12C Inhibitor for the Treatment of Cancer. J Med Chem. 2020;63(13):6679-6693.
[F4]. Awad MM, Liu S, Rybkin II, et al. Acquired Resistance to KRASG12C Inhibition in Cancer. N Engl J Med. 2021;384(25):2382-2393.



[G1]. Beher D, et al. Pharmacological knock-down of the presenilin 1 heterodimer by a novel gamma -secretase inhibitor: implications for presenilin biology. J Biol Chem. 2001 Nov 30;276(48):45394-402.
[G2]. Rasul S, et al. Inhibition of gamma-secretase induces G2/M arrest and triggers apoptosis in breast cancer cells. Br J Cancer. 2009 Jun 16;100(12):1879-88.



[H1]. Menear KA, et al. 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem. 2008 Oct 23;51(20):6581-91
[H2]. Senra JM, et al. Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft.Mol Cancer Ther. 2011 Oct;10(10):1949-58.
[H3]. Yasukawa M, et al. Synergetic Effects of PARP Inhibitor AZD2281 in Oral Squamous Cell Carcinoma in Vitro and in Vivo. Int J Mol Sci. 2016 Feb 24;17(3):272.
[H4]. Bian X, et al. PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy. Oncogene. 2018 Jan 18;37(3):341-351.



[I1]. KoenVandyck, et al. Considerations for the Discovery and Development of 3-Chymotrypsin-Like Cysteine Protease Inhibitors Targeting SARS-CoV-2 Infection. Current Opinion in Virology Available online 27 April 2021



[J1]. DeNardo DG, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011 Jun;1(1):54-67.
[J2]. Kuse Y, et al. Microglia increases the proliferation of retinal precursor cells during postnatal development. Mol Vis. 2018 Jul 30;24:536-545. eCollection 2018.
[J3]. Lee JH, et al. A phase I study of pexidartinib, a colony-stimulating factor 1 receptor inhibitor, in Asian patients with advanced solid tumors. Invest New Drugs. 2019 Mar 2.
[J4]. Merry TL, et al. The CSF1 receptor inhibitor pexidartinib (PLX3397) reduces tissue macrophage levels without affecting glucose homeostasis in mice. Int J Obes (Lond). 2020;44(1):245-253.



[K1]. Xu R, et al. 3-[(1S,2S,3R)-2,3-Difluoro-1-hydroxy-7-methylsulfonylindan-4-yl]oxy-5-fluorobenzonitrile (PT2977), a Hypoxia-Inducible Factor 2α (HIF-2α) Inhibitor for the Treatment of Clear Cell Renal Cell Carcinoma. J Med Chem. 2019 Aug 8;62(15):6876-6893.



[L1]. Tada S, et al. A selective ROCK inhibitor, Y27632, prevents dimethylnitrosamine-induced hepatic fibrosis in rats. J Hepatol. 2001 Apr;34(4):529-36.
[L2]. Inan S, et al. Antiepileptic effects of two Rho-kinase inhibitors, Y-27632 and fasudil, in mice. Br J Pharmacol. 2008 Sep;155(1):44-51.
[L3]. Xue ZW, et al. Rho-associated coiled kinase inhibitor Y-27632 promotes neuronal-like differentiation of adult human adipose tissue-derived stem cells. Chin Med J (Engl). 2012 Sep;125(18):3332-5.
[L4]. Ishizaki T, et al. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol. 2000 May;57(5):976-83.



[M1]. Souers AJ, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013 Feb;19(2):202-8.
[M2]. Peirs S, et al. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood. 2014 Dec 11;124(25):3738-47.
[M3]. Bi C, et al. Inhibition of 4EBP phosphorylation mediates the cytotoxic effect of mechanistic target of rapamycin kinase inhibitors in aggressive B-cell lymphomas. Haematologica. 2017 Apr;102(4):755-764.



[N1]. Li Y, et al. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Hum Reprod. 2021 Mar 18;36(4):951-964.
[N2]. Huo H, et al. Erastin Disrupts Mitochondrial Permeability Transition Pore (mPTP) and Induces Apoptotic Death of Colorectal Cancer Cells. PLoS One. 2016 May 12;11(5):e0154605.
[N3]. Xie Y, et al. Ferroptosis: process and function. Cell Death Differ. 2016 Mar;23(3):369-79.



[O1]. Sheahan TP, et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med. 2020 Apr 6. pii: eabb5883.
[O2]. Toots M, et al. Characterization of orally efficacious influenza drug with high resistance barrier in ferrets and human airway epithelia. Sci Transl Med. 2019 Oct 23;11(515). pii: eaax5866.



[P1]. Furet P, et al. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg Med Chem Lett. 2013 Jul 1;23(13):3741-8.
[P2]. Fritsch C, et al. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther. 2014 May;13(5):1117-29.
[P3]. Gobin B, et al. BYL719, a new α-specific PI3K inhibitor: single administration and in combination with conventional chemotherapy for the treatment of osteosarcoma. Int J Cancer. 2015 Feb 15;136(4):784-96.



[Q1]. Dixon SJ, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-1072.
[Q2]. Skouta R, Dixon SJ, Wang J, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc. 2014;136(12):4551-4556.
[Q3]. Horwath MC, et al. Antifungal Activity of the Lipophilic Antioxidant Ferrostatin-1. Chembiochem. 2017;18(20):2069-2078.
[Q4]. Liu P, Feng Y, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett. 2020;25:10. Published 2020 Feb 27.
[Q5]. Melania Guerrero Hue, et al. FP282 FERROPTOSIS-MEDIATED CELL DEATH IS DECREASED BY CURCUMIN IN RENAL DAMAGE ASSOCIATED TO RHABDOMYOLYSIS, Nephrology Dialysis Transplantation, Volume 34, Issue Supplement_1, June 2019, gfz106.FP282.



[R1]. Lock R1, et al. Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008 Jun;50(6):1181-1189.
[R2]. Wong M, et al. Navitoclax (ABT-263) reduces Bcl-x(L)-mediated chemoresistance in ovarian cancer models.Mol Cancer Ther. 2012 Apr;11(4):1026-1035.
[R3]. Chen J, et al. The Bcl-2/Bcl-X(L)/Bcl-w inhibitor, navitoclax, enhances the activity of chemotherapeutic agents in vitro and in vivo. Mol Cancer Ther. 2011 Dec;10(12):2340-9."



[S1]. Davies CW, et al. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK). Bioorg Med Chem Lett. 2012 Jun 15;22(12):3900-4.
[S2]. Liu HR, et al. Antiproliferative activity of the total saponin of Solanum lyratum Thunb in Hela cells by inducing apoptosis. Pharmazie. 2008 Nov;63(11):836-42.



[T1]. Wesley Peter Blackaby, et al. Mettl3 inhibitory compounds. WO2020201773A1.
[T2]. Eliza Yankova, et al. Small molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021 Apr 26.



[U1]. Shin D, et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 2018 Dec;129:454-462.



[V1]. Ito A, et al. In Vitro Antibacterial Properties of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram-Negative Bacteria. Antimicrob Agents Chemother. 2017 Dec 21;62(1).



[W1]. Harhouri K, et al. MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol Med. 2017 Sep;9(9):1294-1313.
[W2]. Fan WH, et al. Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress. Acta Pharmacol Sin. 2011 May;32(5):619-25.
[W3]. Tsubuki S, et al. Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem. 1996 Mar;119(3):572-6.
[W4]. Fiedler MA, et al. Inhibition of TNF-alpha-induced NF-kappaB activation and IL-8 release in A549 cells with the proteasome inhibitor MG-132. Am J Respir Cell Mol Biol. 1998 Aug;19(2):259-68.
[W5]. MacLaren AP, et al. p53-dependent apoptosis induced by proteasome inhibition in mammary epithelial cells. Cell Death Differ. 2001 Mar;8(3):210-8.
[W6]. Han YH, et al. The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol Rep. 2009 Jul;22(1):215-21.
[W7]. Dang L, et al. Proteasome inhibitor MG132 inhibits the proliferation and promotes the cisplatin-inducedapoptosis of human esophageal squamous cell carcinoma cells. Int J Mol Med. 2014 May;33(5):1083-8.
[W8]. Matsumoto Y, et al. Enhanced efficacy against cervical carcinomas through polymeric micelles physically incorporating theproteasome inhibitor MG132. Cancer Sci. 2016 Jun;107(6):773-81.
[W9]. Bonuccelli G, et al. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. Am J Pathol. 2003 Oct;163(4):1663-75.



[X1]. Ahmed S, et al. Photocleavable dimerizer for the rapid reversal of molecular trap antagonists. J Biol Chem. 2014 Feb 21;289(8):4546-52.
[X2]. Lin W, et al. Oligodendrocyte-specific activation of PERK signaling protects mice against experimental autoimmune encephalomyelitis. J Neurosci. 2013 Apr 3;33(14):5980-91.
[X3]. Haas ME, et al. The Role of Proprotein Convertase Subtilisin/Kexin Type 9 in Nephrotic Syndrome-Associated Hypercholesterolemia. Circulation. 2016 Jul 5;134(1):61-72.



[Y1]. Bai L, et al. A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. Cancer Cell. 2019 Nov 11;36(5):498-511.e17.



[Z1]. Coll RC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015 Mar;21(3):248-55.
[Z2]. Zhai Y, et al. Inhibiting the NLRP3 Inflammasome Activation with MCC950 Ameliorates Diabetic Encephalopathy in db/db Mice. Molecules. 2018 Feb 27;23(3). pii: E522.



[A-A1]. Rehim WM, et al. Antioxidant capacity in Fasciola hepatica patients before and after treatment with triclabendazole alone or in combination with ascorbic acid (vitamin C) and tocofersolan (vitamin E). Arzneimittelforschung. 2003;53(3):214-20.
[A-A2]. Tan S, et al. Recent developments in d-α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy [published correction appears in Drug Deliv. 2017 Nov;24(1):1930]. Drug Deliv. 2017;24(1):1831-1842.
[A-A3]. Holloway Z, et al. The use of tocofersolan as a rescue agent in larval zebrafish exposed to benzo[a]pyrene in early development. Neurotoxicology. 2021 Sep;86:78-84.



[A-B1]. Quintas-Cardama A, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood, 2010, 115(15), 3109-3117.
[A-B2]. Verstovsek S, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med, 2012, 366(9), 799-807.
[A-B3]. Tavallai M, et al. Rationally Repurposing Ruxolitinib (Jakafi (®)) as a Solid Tumor Therapeutic.Front Oncol. 2016 Jun 13;6:142.



[A-C1]. Zhang X, et al. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell. 2013 Jul 25;51(2):226-35.



[A-D1]. Moulder-Thompson S, et al. Phase 1 Study of ONT-380, a HER2 Inhibitor, in Patients with HER2+ Advanced Solid Tumors, with an Expansion Cohort in HER2+ Metastatic Breast Cancer (MBC). Clin Cancer Res. 2017 Jan 4. pii: clincanres.1496.2016.
[A-D2]. Abstract: In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 852. doi:1538-7445.AM2012-852
[A-D3]. P. Lee, et al. In Vivo Activity of ARRY-380, a Potent, Small Molecule Inhibitor of ErbB2 in Combination with RP-56976. Cancer Research



[A-E1]. Davies BR, et al. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background. Mol Cancer Ther. 2012 Apr;11(4):873-87.



[A-F1]. Ring DB, et al. Selective glycogen synthase kinase 3 inhibitors potentiate activation of glucose transport and utilization in vitro and in vivo. Diabetes. 2003 Mar;52(3):588-95.
[A-F2]. Naujok O, et al. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors.BMC Res Notes. 2014 Apr 29;7:273.
[A-F3]. Ye S, et al. Pleiotropy of glycogen synthase kinase-3 inhibition by CHIR99021 promotes self-renewal of embryonic stem cells from refractory mouse strains. PLoS One. 2012;7(4):e35892.
[A-F4]. Bennett CN, et al. Regulation of Wnt signaling during adipogenesis. J Biol Chem. 2002 Aug 23;277(34):30998-1004.
[A-F5]. Wang X, et al. Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Sci Rep. 2015 Apr 10;5:8566.



[A-G1]. Peggy A. Thompson, et al. Preclinical Evaluation of eFT226, a Novel, Potent and Selective eIF4A Inhibitor with Anti-tumor Activity in B-cell Malignancies.
[A-G2]. Gordon DE, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.Nature. 2020 Apr 30.



[A-H1]. Wrobleski ST, et al. Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the Treatment of Autoimmune Diseases: Discovery of the Allosteric Inhibitor BMS-986165. J Med Chem. 2019 Jul 18.
[A-H2]. Catlett I, et al. SAT0226 A first-in-human, study of BMS-986165, a selective, potent, allosteric small molecule inhibitor of tyrosine kinase 2. Annals of the Rheumatic Diseases 2017;76:859.



[A-I1]. A drug, SNDX-5613, to treat acute leukemia with a KMT2A translocation or an NPM1 mutation that has come back (relapsed) or has not gotten better with treatment (refractory).



[A-J1]. Osborne CK. Tamoxifen in the treatment of breast cancer. N Engl J Med. 1998 Nov 26;339(22):1609-18.
[A-J2]. Hawariah A, et al. In vitro response of human breast cancer cell lines to the growth-inhibitory effects of styrylpyrone derivative (SPD) and assessment of its antiestrogenicity. Anticancer Res. 1998 Nov-Dec;18(6A):4383-6.
[A-J3]. Jun Nagai, et al. Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell. 2019 May 16;177(5):1280-1292.e20.
[A-J4]. Zhao R, et al. Tamoxifen enhances the Hsp90 molecular chaperone ATPase activity. PLoS One. 2010 Apr 1;5(4):e9934.
[A-J5]. Kedjouar B, et al. Molecular characterization of the microsomal tamoxifen binding site. J Biol Chem. 2004 Aug 6;279(32):34048-61.
[A-J6]. Feil S, et, al. Inducible Cre mice. Methods Mol Biol. 2009;530:343-63.
[A-J7]. Laura Cooper, et al. Screening and Reverse-Engineering of Estrogen Receptor Ligands as Potent Pan-Filovirus Inhibitors. J Med Chem. 2020 Sep 4.



[A-K1]. Flattery AM, et, al. Efficacy of caspofungin in a juvenile mouse model of central nervous system candidiasis. Antimicrob Agents Chemother. 2011 Jul;55(7):3491-7.
[A-K2]. Mojumder DK, et, al. Evaluating retinal toxicity of intravitreal caspofungin in the mouse eye. Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5796-803.



[A-L1]. Agostini ML, et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. MBio. 2018 Mar 6;9(2). pii: e00221-18.
[A-L2]. Wang M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020 Mar;30(3):269-271.
[A-L3]. Hu H, et al. Optimization of the Prodrug Moiety of Remdesivir to Improve Lung Exposure/Selectivity and Enhance Anti-SARS-CoV-2 Activity. J Med Chem. 2022 Sep 22;65(18):12044-12054.



[A-M1]. Zatreanu D, et al. Polθ inhibitors elicit BRCA-gene synthetic lethality and target PARP inhibitor resistance. Nat Commun. 2021 Jun 17;12(1):3636.



[A-N1]. Tran C, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science, 2009, 324 (5928), 787-790.
[A-N2]. Scher HI, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet, 2010, 375(9724), 1437-1446.
[A-N3]. Guerrero J, et al. Enzalutamide, an androgen receptor signaling inhibitor, induces tumor regression in a mouse model of castration-resistant prostate cancer. Prostate. 2013 Sep;73(12):1291-305.
[A-N4]. Kim TH, et al. Pharmacokinetics of enzalutamide, an anti-prostate cancer drug, in rats. Arch Pharm Res. 2015 Nov;38(11):2076-82.



[A-O1]. Grempler R, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012 Jan;14(1):83-90.
[A-O2]. Cheng ST, et al. The Effects of Empagliflozin, an SGLT2 Inhibitor, on Pancreatic β-Cell Mass and Glucose Homeostasis in Type 1 Diabetes. PLoS One. 2016 Jan 25;11(1):e0147391.
[A-O3]. Nikole J.ByrneBSc, et al. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure. JACC Basic Transl Sci. 2017 Aug;2(4):347-354.
[A-O4]. Sakaeda T, et al. Susceptibility to serious skin and subcutaneous tissue disorders and skin tissue distribution of sodium-dependent glucose co-transporter type 2 (SGLT2) inhibitors. Int J Med Sci. 2018 Jun 13;15(9):937-943.



[A-Q1]. Filippakopoulos P, et al. Selective inhibition of BET bromodomains. Nature. 2010 Dec 23;468(7327):1067-73.
[A-Q2]. Sakamaki JI, et al. Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and LysosomalFunction. Mol Cell. 2017 May 18;66(4):517-532.e9.
[A-Q3]. Matzuk MM, et al. Small-molecule inhibition of BRDT for male contraception. Cell. 2012 Aug 17;150(4):673-84.



[A-R1]. Morishita T, et al. The photosensitizer verteporfin has light-independent anti-leukemic activity for Ph-positive acute lymphoblastic leukemia and synergistically works with BMS-354825. Oncotarget. 2016 Aug 2.
[A-R2]. Pan W, et al. Verteporfin can Reverse the NSC 125973 Resistance Induced by YAP Over-Expression in HCT-8/T Cells without Photoactivation through Inhibiting YAP Expression. Cell Physiol Biochem. 2016;39(2):481-90.
[A-R3]. Donohue E, et al. The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model.J Cancer. 2013 Aug 28;4(7):585-96.



[A-S1]. Kotschy A, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016 Oct 27;538(7626):477-482.



[A-T1]. R Hong, Abstract PD4-14: GDC-0077 is a selective PI3Kalpha inhibitor that demonstrates robust efficacy in PIK3CA mutant breast cancer models as a single agent and in combination with standard of care therapies. 2017 San Antonio Breast Cancer Symposium.



[A-U1]. Pyrazolopyridine derivative having glp-1 receptor agonist effect. WO2013046136A1.
[A-U2]. Kawai T, Sun B, Yoshino H, et al. Structural basis for GLP-1 receptor activation by LY3502970, an orally active nonpeptide agonist. Proc Natl Acad Sci U S A. 2020;117(47):29959-29967.



[A-V1]. Compounds and compositions as protein kinase inhibitors . Patent WO 2011025927 A1
[A-V2]. Li Z, et al. Encorafenib (LGX818), a potent BRAF inhibitor, induces senescence accompanied by autophagy in BRAFV600E melanoma cells. Cancer Lett. 2016 Jan 28;370(2):332-44.



[A-W1]. Zhao ZY, et al. A Cell-Permeant Mimetic of NMN Activates SARM1 to Produce Cyclic ADP-Ribose and Induce Non-apoptotic Cell Death. iScience. 2019 May 31;15:452-466.



[A-X1]. Leubitz A, et al. Safety, Tolerability, and Pharmacokinetics of Single Ascending Doses of ELX-02, a Potential Treatment for Genetic Disorders Caused by Nonsense Mutations, in Healthy Volunteers. Clin Pharmacol Drug Dev. 2019 Jan 16.



[A-Y1]. Illuzzi G, et, al. Preclinical Characterization of AZD5305, A Next-Generation, Highly Selective PARP1 Inhibitor and Trapper. Clin Cancer Res. 2022 Nov 1;28(21):4724-4736.
[A-Y2]. Johannes JW, et, al. Discovery of 5-{4-[(7-Ethyl-6-oxo-5,6-dihydro-1,5-naphthyridin-3-yl)methyl]piperazin-1-yl}-N-methylpyridine-2-carboxamide (AZD5305): A PARP1-DNA Trapper with High Selectivity for PARP1 over PARP2 and Other PARPs. J Med Chem. 2021 Oct 14;64(19):14498-14512.



[A-Z1]. Carbonetti NH, et al. Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol. 2010 Mar;5(3):455-69.
[A-Z2]. Petronila Penela, et al. G protein-coupled receptor kinase 2 positively regulates epithelial cell migration. EMBO J. 2008 Apr 23;27(8):1206-18.
[A-Z3]. Nicholas H Carbonetti, et al. Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathog Dis. 2015 Nov;73(8):ftv073.



[B-A1]. Lin X, et al. Targeting estrogen receptor α for degradation with PROTACs: A promising approach to overcome endocrine resistance. Eur J Med Chem. 2020;206:112689.
[B-A2]. JJ Flanagan, et al. Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer.



[B-B1]. Watanabe K, et, al. Low-dose eribulin reduces lung metastasis of osteosarcoma in vitro and in vivo. Oncotarget. 2019 Jan 4; 10(2): 161-174.
[B-B2]. Smith, J.A., et al., Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry, 2010. 49(6): p. 1331-7.
[B-B3]. Okouneva, T., et al., Inhibition of centromere dynamics by eribulin (E7389) during mitotic metaphase. Mol Cancer Ther, 2008. 7(7): p. 2003-11.
[B-B4]. Towle, M.J., et al., Eribulin induces irreversible mitotic blockade: implications of cell-based pharmacodynamics for in vivo efficacy under intermittent dosing conditions. Cancer Res, 2011. 71(2): p. 496-505.



[B-C1]. Corrales L, et al. Direct Activation of STING in the Tumor Microenvironment Leads to Potent and Systemic Tumor Regression and Immunity. Cell Rep. 2015 May 19;11(7):1018-30.



[B-D1]. Ii M, et al. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling.
[B-D2]. Yamada M, et al. Discovery of novel and potent small-molecule inhibitors of NO and cytokine production as antisepsis agents: synthesis and biological activity of alkyl 6-(N-substituted sulfamoyl)cyclohex-1-ene-1-carboxylate. J Med Chem. 2005 Nov 17;48(23):7457-67.
[B-D3]. Yuko Ono, et al. TAK-242, a Specific Inhibitor of Toll-like Receptor 4 Signalling, Prevents Endotoxemia-Induced Skeletal Muscle Wasting in Mice. Sci Rep. 2020 Jan 20;10(1):694.



[B-E1]. Fry DW, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004 Nov;3(11):1427-38.
[B-E2]. Goel S, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017 Aug 24;548(7668):471-475.
[B-E3]. Richard S Finn, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):R77.
[B-E4]. Bollard J, et al. Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma. Gut. 2017 Jul;66(7):1286-1296.



[B-F1]. Gross MI, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014 Apr;13(4):890-901.
[B-F2]. Biancur DE, et al. Compensatory metabolic networks in pancreatic cancers upon perturbation of glutaminemetabolism. Nat Commun. 2017 Jul 3;8:15965.
[B-F3]. Zhou WJ, et al. Estrogen inhibits autophagy and promotes growth of endometrial cancer by promoting glutamine metabolism. Cell Commun Signal. 2019 Aug 20;17(1):99.



[B-G1]. Hecker SJ, et al. Discovery of a Cyclic Boronic Acid β-Lactamase Inhibitor (RPX7009) with Utility vs Class A Serine Carbapenemases. J Med Chem. 2015 May 14;58(9):3682-92.
[B-G2]. Castanheira M, et al. Effect of the β-Lactamase Inhibitor Vaborbactam Combined with SM 7338 against Serine Carbapenemase-Producing Enterobacteriaceae. Antimicrob Agents Chemother. 2016 Aug 22;60(9):5454-8.
[B-G3]. Wong D, et al. Novel Beta-Lactamase Inhibitors: Unlocking Their Potential in Therapy.



[B-H1]. Jason J Marineau, et al. Discovery of SY-5609: A Selective, Noncovalent Inhibitor of CDK7. J Med Chem. 2021 Nov 2.
[B-H2]. Michael Bradley, et al. Inhibitors of cyclin-dependent kinase 7 (cdk7). WO2020093011A1.



[B-I1]. Rehim WM, et al. Antioxidant capacity in Fasciola hepatica patients before and after treatment with triclabendazole alone or in combination with ascorbic acid (vitamin C) and tocofersolan (vitamin E). Arzneimittelforschung. 2003;53(3):214-20.
[B-I2]. Tan S, et al. Recent developments in d-α-tocopheryl polyethylene glycol-succinate-based nanomedicine for cancer therapy [published correction appears in Drug Deliv. 2017 Nov;24(1):1930]. Drug Deliv. 2017;24(1):1831-1842.
[B-I3]. Holloway Z, et al. The use of tocofersolan as a rescue agent in larval zebrafish exposed to benzo[a]pyrene in early development. Neurotoxicology. 2021 Sep;86:78-84.



[B-J1]. Wan C, et al. Gd-DTPA-induced dynamic metabonomic changes in rat biofluids. Magn Reson Imaging. 2017 Dec;44:15-25.
[B-J2]. Taheri S, et al. Analysis of pharmacokinetics of Gd-DTPA for dynamic contrast-enhanced magnetic resonance imaging. Magn Reson Imaging. 2016 Sep;34(7):1034-40.



[B-K1]. K Maruyama, et al. 2,2'-Bispyridyl disulfide rapidly induces intramolecular disulfide bonds in peptides. Peptides. 1999;20(7):881-4.



[B-L1]. Binbin Cheng, et al. Discovery of novel resorcinol diphenyl ether-based PROTAC-like molecules as dual inhibitors and degraders of PD-L1. Eur J Med Chem. 2020;199:112377.



[B-M1]. Chen HJ, et, al. Facile synthesis of Prussian blue nanoparticles as pH-responsive drug carriers for combined photothermal-chemo treatment of cancer. RCS advances. 2016 Oct 9; 7:248-255.
[B-M2]. Ferrer-Vilanova A, et, al. Electrochromogenic Detection of Live Bacteria Using Soluble and Insoluble Prussian Blue. ACS Omega. 2021 Nov 11;6(46):30989-30997.
[B-M3]. Thompson DF, et, al. Soluble or insoluble prussian blue for radiocesium and thallium poisoning? Ann Pharmacother. 2004 Sep;38(9):1509-14.
[B-M4]. Busquets MA, et, al. Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications. Drug Discov Today. 2020 Aug;25(8):1431-1443.



[B-N1]. Hinz, B, et al. Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man. FASEB J, 2008. 22(2): p. 383-90.
[B-N2]. Miroslav Dinić, et al. Lactobacillus fermentum Postbiotic-induced Autophagy as Potential Approach for Treatment ofAcetaminophen Hepatotoxicity. Front Microbiol. 2017 Apr 6;8:594.
[B-N3]. Uchida NS, et al. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice. Evid Based Complement Alternat Med. 2017;2017:1796209.
[B-N4]. Rothen JP, et al. Acetaminophen is an inhibitor of hepatic N-acetyltransferase 2 in vitro and in vivo. Pharmacogenetics. 1998 Dec;8(6):553-9.



[B-O1]. http://www.chemicalland21.com/lifescience/phar/N-METHYL-D-GLUCAMINE.htm
[B-O2]. Souza ALR, et, al. Meglumine-based supra-amphiphile self-assembled in water as a skin drug delivery system: Influence of unfrozen bound water in the system bioadhesiveness. Colloids Surf B Biointerfaces. 2019 Dec 1;184:110523.



[B-P1]. Riley MGI, et, al. Subchronic oral toxicity of salcaprozate sodium (SNAC) in Sprague-Dawley and Wistar rats. Int J Toxicol. Jul-Aug 2009; 28(4):278-93.
[B-P2]. Twarog C, et, al. Intestinal Permeation Enhancers for Oral Delivery of Macromolecules: A Comparison between Salcaprozate Sodium (SNAC) and Sodium Caprate (C 10). Pharmaceutics. 2019 Feb 13; 11(2):78.
[B-P3]. Li Y, et, al. Impact of Sodium N-[8-(2-Hydroxybenzoyl)amino]-caprylate on Intestinal Permeability for Notoginsenoside R1 and Salvianolic Acids in Caco-2 Cells Transport and Rat Pharmacokinetics. Molecules. 2018 Nov 16; 23(11):2990.



[B-Q1]. Said A, et al. Chloroquine promotes IL-17 production by CD4+ T cells via p38-dependent IL-23 release by monocyte-derived Langerhans-like cells. J Immunol. 2014 Dec 15;193(12):6135-43.
[B-Q2]. Tuomela J, et al. Chloroquine has tumor-inhibitory and tumor-promoting effects in triple-negative breast cancer. Oncol Lett. 2013 Dec;6(6):1665-1672.
[B-Q3]. Mohamed FE, et al. Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma. Liver Int. 2014 Jul 2. doi: 10.1111/liv.12626.
[B-Q4]. Colson P, et al. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020;55(4):105932.
[B-Q5]. Wang M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus
(2019-nCoV) in vitro. Cell Res. 2020 Mar;30(3):269-271.
[B-Q6]. Savarino A, et al. The anti-HIV-1 activity of chloroquine. J Clin Virol. 2001;20(3):131-135.



[B-R1]. Harhouri K, et al. MG132-induced progerin clearance is mediated by autophagy activation and splicing regulation. EMBO Mol Med. 2017 Sep;9(9):1294-1313.
[B-R2]. Fan WH, et al. Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress. Acta Pharmacol Sin. 2011 May;32(5):619-25.
[B-R3]. Tsubuki S, et al. Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-leucine and tri-leucine. J Biochem. 1996 Mar;119(3):572-6.
[B-R4]. Fiedler MA, et al. Inhibition of TNF-alpha-induced NF-kappaB activation and IL-8 release in A549 cells with the proteasome inhibitor MG-132. Am J Respir Cell Mol Biol. 1998 Aug;19(2):259-68.
[B-R5]. MacLaren AP, et al. p53-dependent apoptosis induced by proteasome inhibition in mammary epithelial cells. Cell Death Differ. 2001 Mar;8(3):210-8.
[B-R6]. Han YH, et al. The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol Rep. 2009 Jul;22(1):215-21.
[B-R7]. Dang L, et al. Proteasome inhibitor MG132 inhibits the proliferation and promotes the cisplatin-inducedapoptosis of human esophageal squamous cell carcinoma cells. Int J Mol Med. 2014 May;33(5):1083-8.
[B-R8]. Matsumoto Y, et al. Enhanced efficacy against cervical carcinomas through polymeric micelles physically incorporating theproteasome inhibitor MG132. Cancer Sci. 2016 Jun;107(6):773-81.
[B-R9]. Bonuccelli G, et al. Proteasome inhibitor (MG-132) treatment of mdx mice rescues the expression and membrane localization of dystrophin and dystrophin-associated proteins. Am J Pathol. 2003 Oct;163(4):1663-75.



[B-S1]. Dixon SJ, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-1072.
[B-S2]. Skouta R, Dixon SJ, Wang J, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc. 2014;136(12):4551-4556.
[B-S3]. Horwath MC, et al. Antifungal Activity of the Lipophilic Antioxidant Ferrostatin-1. Chembiochem. 2017;18(20):2069-2078.
[B-S4]. Liu P, Feng Y, et al. Ferrostatin-1 alleviates lipopolysaccharide-induced acute lung injury via inhibiting ferroptosis. Cell Mol Biol Lett. 2020;25:10. Published 2020 Feb 27.
[B-S5]. Melania Guerrero Hue, et al. FP282 FERROPTOSIS-MEDIATED CELL DEATH IS DECREASED BY CURCUMIN IN RENAL DAMAGE ASSOCIATED TO RHABDOMYOLYSIS, Nephrology Dialysis Transplantation, Volume 34, Issue Supplement_1, June 2019, gfz106.FP282.



[B-T1]. Li Y, et al. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Hum Reprod. 2021 Mar 18;36(4):951-964.
[B-T2]. Huo H, et al. Erastin Disrupts Mitochondrial Permeability Transition Pore (mPTP) and Induces Apoptotic Death of Colorectal Cancer Cells. PLoS One. 2016 May 12;11(5):e0154605.
[B-T3]. Xie Y, et al. Ferroptosis: process and function. Cell Death Differ. 2016 Mar;23(3):369-79.



[B-U1]. Wang X, et al. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem. 2000 Dec 15;275(50):39435-43.
[B-U2]. Cummings BS, et al. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. J Pharmacol Exp Ther. 2002 Jul;302(1):8-17.
[B-U3]. Park HR, et al. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice. BMC Cancer. 2009 Mar 17;9:85.
[B-U4]. Shimeda Y, et al. Protective effects of capsaicin against cisplatin-induced nephrotoxicity in rats. Biol Pharm Bull. 2005 Sep;28(9):1635-8.
[B-U5]. Hall MD, et al. Say no to DMSO: dimethylsulfoxide inactivates cisplatin, NSC 241240, and other platinum complexes. Cancer Res. 2014 Jul 15;74(14):3913-22.
[B-U6]. Wu K, et al. Cisplatin inhibits the progression of bladder cancer by selectively depleting G-MDSCs: A novel chemoimmunomodulating strategy. Clin Immunol. 2018 Aug;193:60-69.



[B-V1]. Said A, et al. Chloroquine promotes IL-17 production by CD4+ T cells via p38-dependent IL-23 release by monocyte-derived Langerhans-like cells. J Immunol. 2014 Dec 15;193(12):6135-43.
[B-V2]. Tuomela J, et al. Chloroquine has tumor-inhibitory and tumor-promoting effects in triple-negative breast cancer. Oncol Lett. 2013 Dec;6(6):1665-1672.
[B-V3]. Mohamed FE, et al. Effect of toll-like receptor 7 and 9 targeted therapy to prevent the development of hepatocellular carcinoma. Liver Int. 2014 Jul 2. doi: 10.1111/liv.12626.
[B-V4]. Colson P, et al. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020;55(4):105932.
[B-V5]. Savarino A, et al. The anti-HIV-1 activity of chloroquine. J Clin Virol. 2001;20(3):131-135."



[B-W1]. Shin D, et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 2018 Dec;129:454-462.



[B-X1]. Chaussade C, et al. Evidence for functional redundancy of class IA PI3K isoforms. Biochem J. 2007 Jun 15;404(3):449-58.
[B-X2]. Gharbi SI, et al. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J. 2007 May 15;404(1):15-21.
[B-X3]. Davidson D, et al. Small Molecules, Inhibitors of DNA-PK, Targeting DNA Repair, and Beyond. Front Pharmacol. 2013 Jan 31;4:5.
[B-X4]. Jiang H, et al. Phosphatidylinositol 3-kinase inhibitor(LY294002) induces apoptosis of human nasopharyngeal carcinoma invitro and in vivo. J Exp Clin Cancer Res. 2010 Apr 22;29:34.
[B-X5]. Md Mokhtar AH, et al. LY294002, a PI3K pathway inhibitor, prevents leptin-induced adverse effects on spermatozoa in Sprague-Dawley rats. Andrologia. 2019 Apr;51(3):e13196.
[B-X6]. Yi-Jen Hsueh, et al. Lysophosphatidic acid induces YAP-promoted proliferation of human corneal endothelial cells via PI3K and ROCK pathways. Mol Ther Methods Clin Dev. 2015 Apr 29;2:15014.



[B-Y1]. Menear KA, et al. 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem. 2008 Oct 23;51(20):6581-91
[B-Y2]. Senra JM, et al. Inhibition of PARP-1 by olaparib (AZD2281) increases the radiosensitivity of a lung tumor xenograft.Mol Cancer Ther. 2011 Oct;10(10):1949-58.
[B-Y3]. Yasukawa M, et al. Synergetic Effects of PARP Inhibitor AZD2281 in Oral Squamous Cell Carcinoma in Vitro and in Vivo. Int J Mol Sci. 2016 Feb 24;17(3):272.
[B-Y4]. Bian X, et al. PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy. Oncogene. 2018 Jan 18;37(3):341-351.



[B-Z1]. Tada S, et al. A selective ROCK inhibitor, Y27632, prevents dimethylnitrosamine-induced hepatic fibrosis in rats. J Hepatol. 2001 Apr;34(4):529-36.
[B-Z2]. Inan S, et al. Antiepileptic effects of two Rho-kinase inhibitors, Y-27632 and fasudil, in mice. Br J Pharmacol. 2008 Sep;155(1):44-51.
[B-Z3]. Xue ZW, et al. Rho-associated coiled kinase inhibitor Y-27632 promotes neuronal-like differentiation of adult human adipose tissue-derived stem cells. Chin Med J (Engl). 2012 Sep;125(18):3332-5.
[B-Z4]. Ishizaki T, et al. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol. 2000 May;57(5):976-83.



[C-A1]. Osborne CK. Tamoxifen in the treatment of breast cancer. N Engl J Med. 1998 Nov 26;339(22):1609-18.
[C-A2]. Hawariah A, et al. In vitro response of human breast cancer cell lines to the growth-inhibitory effects of styrylpyrone derivative (SPD) and assessment of its antiestrogenicity. Anticancer Res. 1998 Nov-Dec;18(6A):4383-6.
[C-A3]. Jun Nagai, et al. Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell. 2019 May 16;177(5):1280-1292.e20.
[C-A4]. Zhao R, et al. Tamoxifen enhances the Hsp90 molecular chaperone ATPase activity. PLoS One. 2010 Apr 1;5(4):e9934.
[C-A5]. Kedjouar B, et al. Molecular characterization of the microsomal tamoxifen binding site. J Biol Chem. 2004 Aug 6;279(32):34048-61.
[C-A6]. Feil S, et, al. Inducible Cre mice. Methods Mol Biol. 2009;530:343-63.
[C-A7]. Laura Cooper, et al. Screening and Reverse-Engineering of Estrogen Receptor Ligands as Potent Pan-Filovirus Inhibitors. J Med Chem. 2020 Sep 4.



[C-B1]. Davies CW, et al. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK). Bioorg Med Chem Lett. 2012 Jun 15;22(12):3900-4.
[C-B2]. Liu HR, et al. Antiproliferative activity of the total saponin of Solanum lyratum Thunb in Hela cells by inducing apoptosis. Pharmazie. 2008 Nov;63(11):836-42.



[C-C1]. LaLone CA, et al. Effects of a glucocorticoid receptor agonist, Dexamethasone, on fathead minnow reproduction, growth, and development. Environ Toxicol Chem. 2012 Mar;31(3):611-22.
[C-C2]. Adcock IM, et al. Ligand-induced differentiation of glucocorticoid receptor (GR) trans-repression and transactivation: preferential targetting of NF-kappaB and lack of I-kappaB involvement. Br J Pharmacol. 1999 Jun;127(4):1003-11
[C-C3]. Rocksén D, et al. Differential anti-inflammatory and anti-oxidative effects of Dexamethasone and N-acetylcysteine in endotoxin-induced lung inflammation. Clin Exp Immunol. 2000 Nov;122(2):249-56
[C-C4]. Roussel D, et al. Dexamethasone treatment specifically increases the basal proton conductance of rat liver mitochondria. FEBS Lett. 2003 Apr 24;541(1-3):75-9.
[C-C5]. Ballabh P, et al. Neutrophil and monocyte adhesion molecules in bronchopulmonary dysplasia, and effects of corticosteroids. Arch Dis Child Fetal Neonatal Ed. 2004 Jan;89(1):F76-83.
[C-C6]. Heidi Ledford. et al. Coronavirus Breakthrough: Dexamethasone Is First Drug Shown to Save Lives. Nature. 2020 Jun 16.
[C-C7]. Yun Chen, et al. Glucocorticoids inhibit production of exosomes containing inflammatory microRNA-155 in lipopolysaccharide-induced macrophage inflammatory responses. Int J Clin Exp Pathol 2018;11(7):3391-3397.



[C-D1]. Ring DB, et al. Selective glycogen synthase kinase 3 inhibitors potentiate activation of glucose transport and utilization in vitro and in vivo. Diabetes. 2003 Mar;52(3):588-95.
[C-D2]. Naujok O, et al. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors.BMC Res Notes. 2014 Apr 29;7:273.
[C-D3]. Ye S, et al. Pleiotropy of glycogen synthase kinase-3 inhibition by CHIR99021 promotes self-renewal of embryonic stem cells from refractory mouse strains. PLoS One. 2012;7(4):e35892.
[C-D4]. Bennett CN, et al. Regulation of Wnt signaling during adipogenesis. J Biol Chem. 2002 Aug 23;277(34):30998-1004.
[C-D5]. Wang X, et al. Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation. Sci Rep. 2015 Apr 10;5:8566.



[C-E1]. Ishizaki T, et al. Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol. 2000 May;57(5):976-83.
[C-E2]. Xue ZW, et al. Rho-associated coiled kinase inhibitor Y-27632 promotes neuronal-like differentiation of adult human adipose tissue-derived stem cells.Chin Med J (Engl). 2012 Sep;125(18):3332-5.
[C-E3]. Tada S, et al. A selective ROCK inhibitor, Y27632, prevents dimethylnitrosamine-induced hepatic fibrosis in rats. J Hepatol. 2001 Apr;34(4):529-36.
[C-E4]. Inan S, et al. Antiepileptic effects of two Rho-kinase inhibitors, Y-27632 and fasudil, in mice. Br J Pharmacol. 2008 Sep;155(1):44-51.
[C-E5]. Maldonado M, et al. ROCK inhibitor primes human induced pluripotent stem cells to selectively differentiate towardsmesendodermal lineage via epithelial-mesenchymal transition-like modulation. Stem Cell Res. 2016 Sep;17(2):222-227.
[C-E6]. Kan L, et al. Rho-Associated Kinase Inhibitor (Y-27632) Attenuates Doxorubicin-Induced Apoptosis of Human Cardiac Stem Cells. PLoS One. 2015;10(12):e0144513. Published 2015 Dec 8.
[C-E7]. Zhang L, et al. ROCK inhibitor Y-27632 suppresses dissociation-induced apoptosis of murine prostate stem/progenitor cells and increases their cloning efficiency. PLoS One. 2011;6(3):e18271. Published 2011 Mar 28.
[C-E8]. Svoboda KK, et al. ROCK inhibitor (Y27632) increases apoptosis and disrupts the actin cortical mat in embryonic avian corneal epithelium. Dev Dyn. 2004;229(3):579-590.



[C-F1]. Souers AJ, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013 Feb;19(2):202-8.
[C-F2]. Peirs S, et al. ABT-199 mediated inhibition of BCL-2 as a novel therapeutic strategy in T-cell acute lymphoblastic leukemia. Blood. 2014 Dec 11;124(25):3738-47.
[C-F3]. Bi C, et al. Inhibition of 4EBP phosphorylation mediates the cytotoxic effect of mechanistic target of rapamycin kinase inhibitors in aggressive B-cell lymphomas. Haematologica. 2017 Apr;102(4):755-764.



[C-G1]. Duscher D, et al. Comparison of the Hydroxylase Inhibitor Dimethyloxalylglycine and the Iron Chelator Deferoxamine in Diabetic and Aged Wound Healing. Plast Reconstr Surg. 2017 Mar;139(3):695e-706e.
[C-G2]. Dongiovanni P, et al. Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am J Pathol. 2008 Mar;172(3):738-47.
[C-G3]. Wang G, et al. In vitro assessment of deferoxamine on mesenchymal stromal cells from tumor and bone marrow. Environ Toxicol Pharmacol. 2017 Jan;49:58-64.
[C-G4]. Wu Y, et al. Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells. Neurochem Int. 2010 Oct;57(3):198-205.
[C-G5]. Bellotti D, et al. Deferoxamine B: A Natural, Excellent and Versatile Metal Chelator. Molecules. 2021 May 28;26(11):3255.



[C-H1]. Adams J, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999 Jun 1;59(11):2615-22.
[C-H2]. Shahshahan MA, et al. Potential usage of proteasome inhibitor bortezomib (Velcade, PS-341) in the treatment of metastaticmelanoma: basic and clinical aspects. Am J Cancer Res. 2011;1(7):913-24.
[C-H3]. Pérez-Galán P, et al. The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood. 2006 Jan 1;107(1):257-64.
[C-H4]. Yerlikaya A, et al. Combined effects of the proteasome inhibitor bortezomib and Hsp70 inhibitors on the B16F10 melanoma cell line. Mol Med Rep. 2010 Mar-Apr;3(2):333-9.
[C-H5]. Mujtaba T, et al. Advances in the understanding of mechanisms and therapeutic use of bortezomib. Discov Med. 2011 Dec;12(67):471-80.
[C-H6]. Fernández Y, et al. Chemical blockage of the proteasome inhibitory function of bortezomib: impact on tumor cell death. J Biol Chem. 2006 Jan 13;281(2):1107-18.



[C-I1]. Zhou G, et al. Role of AMP-activated protein kinase in mechanism of action. J Clin Invest. 2001 Oct;108(8):1167-74.
[C-I2]. Kim YM, et al. Compound C independent of AMPK inhibits ICAM-1 and VCAM-1 expression in inflammatory stimulants-activated endothelial cells in vitro and in vivo. Atherosclerosis. 2011 Nov;219(1):57-64.
[C-I3]. Saito S, et al. Compound C prevents the unfolded protein response during glucose deprivation through a mechanism independent of AMPK and BMP signaling. PLoS One. 2012;7(9):e45845.
[C-I4]. Guo Y, et al. AMPK inhibition blocks ROS-NFκB signaling and attenuates endotoxemia-induced liver injury. PLoS One. 2014 Jan 24;9(1):e86881.
[C-I5]. Yu PB, et al. Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat Chem Biol. 2008 Jan;4(1):33-41.



[C-J1]. Gareth J Inman, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol. 2002 Jul;62(1):65-74.
[C-J2]. Sunil K Halder, et al. A specific inhibitor of TGF-beta receptor kinase, SB-431542, as a potent antitumor agent for human cancers. Neoplasia. 2005 May;7(5):509-21.
[C-J3]. Yi-qin Xiao, et al. SB-431542 inhibition of scar formation after filtration surgery and its potential mechanism. Invest Ophthalmol Vis Sci. 2009 Apr;50(4):1698-706.



[C-K1]. Coll RC, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015 Mar;21(3):248-55.
[C-K2]. Zhai Y, et al. Inhibiting the NLRP3 Inflammasome Activation with MCC950 Ameliorates Diabetic Encephalopathy in db/db Mice. Molecules. 2018 Feb 27;23(3). pii: E522.



[C-L1]. Han R, et al. Amphiphilic dendritic nanomicelle-mediated co-delivery of 5-fluorouracil and NSC 123127 for enhanced therapeutic efficacy. J Drug Target. 2016 Jun 29:1-28. [Epub ahead of print]
[C-L2]. Zeng Q, et al. Knockdown of NFBD1/MDC1 enhances chemosensitivity to NSC 119875 or 5-fluorouracil in nasopharyngeal carcinoma CNE1 cells. Mol Cell Biochem. 2016 Jul;418(1-2):137-46.
[C-L3]. Jones DH, et al. Ten-Year and Beyond Follow-up After Treatment With Highly Purified Liquid-Injectable Silicone for HIV-Associated Facial Lipoatrophy: A Report of 164 Patients. Dermatol Surg. 2019 Jul;45(7):941-948.
[C-L4]. McQuade RM, et al. Gastrointestinal dysfunction and enteric neurotoxicity following treatment with anticancer chemotherapeutic agent 5-fluorouracil. Neurogastroenterol Motil. 2016 Jun 28.
[C-L5]. Yin L, et al. Antitumor effects of oncolytic herpes simplex virus type 2 against colorectal cancer in vitro and in vivo. Ther Clin Risk Manag. 2017 Feb 7;13:117-130.
[C-L6]. Snyder SM, et al. Initial Experience with Topical Fluorouracil for Treatment of HIV-Associated Anal Intraepithelial Neoplasia. J Int Assoc Physicians AIDS Care (Chic). 2011;10(2):83-88.
[C-L7]. Pek Yee Lum, et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell. 2004 Jan 9;116(1):121-37.



[C-M1]. Yamaguchi T, et al. Suppressive effect of an orally active MEK1/2 inhibitor in two different animal models for rheumatoid arthritis: a comparison with HWA486. Inflamm Res, 2012, 61(5), 445-454.
[C-M2]. Yamaguchi T, et al. Antitumor activities of JTP-74057 (GSK1120212), a novel MEK1/2 inhibitor, on colorectal cancer cell lines in vitro and in vivo. Int J Oncol, 2011, 39(1), 23-31.
[C-M3]. Abe H, et al. Discovery of a Highly Potent and Selective MEK Inhibitor: GSK1120212 (JTP-74057 DMSO Solvate). ACS Med Chem Lett. 2011 Feb 28;2(4):320-4.
[C-M4]. Liu H, et al. Identifying and Targeting Sporadic Oncogenic Genetic Aberrations in Mouse Models of Triple Negative Breast Cancer. Cancer Discov. 2018 Mar;8(3):354-369.
[C-M5]. Lai J, et al. Elimination of melanoma by sortase A-generated TCR-like antibody-drug conjugates (TL-ADCs) targeting intracellular melanoma antigen MART-1. Biomaterials. 2018 Sep;178:158-169.



[C-N1]. Raymond E, et al. Oxaliplatin: a review of preclinical and clinical studies. Ann Oncol. 1998 Oct;9(10):1053-71.
[C-N2]. Mohammed MQ, et al. Oxaliplatin is active in vitro against human melanoma cell lines: comparison with NSC 119875 and NSC 241240. Anticancer Drugs. 2000 Nov;11(10):859-63.
[C-N3]. Pendyala L, et al. In vitro cytotoxicity, protein binding, red blood cell partitioning, and biotransformation of oxaliplatin. Cancer Res. 1993 Dec 15;53(24):5970-6.
[C-N4]. Wang Z, et al. Oxaliplatin induces apoptosis in hepatocellular carcinoma cells and inhibits tumor growth. Expert Opin Investig Drugs. 2009 Nov;18(11):1595-604
[C-N5]. Mathé G, et al. Oxalato-platinum or 1-OHP, a third-generation platinum complex: an experimental and clinical appraisal and preliminary comparison with cis-platinum. Biomed Pharmacother. 1989;43(4):237-50.
[C-N6]. Schellingerhout D, et al. Impairment of retrograde neuronal transport in oxaliplatin-induced neuropathy demonstrated by molecular imaging. PLoS One. 2012;7(9):e45776. doi: 10.1371/journal.pone.0045776. Epub 2012 Sep 20.
[C-N7]. Park GY, et al. Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile. Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):11987-92.
[C-N8]. Yi Yao, et al. Comparative proteomic analysis of colon cancer cells in response to oxaliplatin treatment. Biochim Biophys Acta. 2009 Oct;1794(10):1433-40.
[C-N9]. Garrett MJ, et, al. Capecitabine, Oxaliplatin, and Bevacizumab (BCapOx) Regimen for Metastatic Colorectal Cancer. Hosp Pharm. 2017 May;52(5):341-347.



[C-O1]. Wilhelm SM, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004 Oct 1;64(19):7099-109.
[C-O2]. El-Ashmawy NE, et al. Sorafenib effect on liver neoplastic changes in rats: more than a kinase inhibitor. Clin Exp Med. 2016 Apr 16.
[C-O3]. Jin W, et al. Long non-coding RNA TUC338 is functionally involved in sorafenib-sensitized hepatocarcinoma cells by targeting RASAL1. Oncol Rep. 2017 Jan;37(1):273-280.
[C-O4]. Li M, et al. Activation of an AKT/FOXM1/STMN1 pathway drives resistance to tyrosine kinase inhibitors in lung cancer. Br J Cancer. 2017 Aug 29.



[C-P1]. Davies SP, et al. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J. 2000 Oct 1;351(Pt 1):95-105.
[C-P2]. Lali FV, et al. The pyridinyl imidazole inhibitor SB203580 blocks phosphoinositide-dependent protein kinase activity, protein kinase B phosphorylation, and retinoblastoma hyperphosphorylation in interleukin-2-stimulated T cells independently of p38 mitogen-activated protein kinase. J Biol Chem. 2000 Mar 10;275(10):7395-402.
[C-P3]. Leelahavanichkul K, et al. A role for p38 MAPK in head and neck cancer cell growth and tumor-induced angiogenesis and lymphangiogenesis. Mol Oncol. 2014 Feb;8(1):105-18.



[C-Q1]. Degterev A, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005 Jul;1(2):112-9.
[C-Q2]. Linkermann A, et al. The RIP1-kinase inhibitor necrostatin-1 prevents osmotic nephrosis and contrast-induced AKI in mice. J Am Soc Nephrol. 2013 Oct;24(10):1545-57.
[C-Q3]. Huang C, et al. Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS One. 2013 Jun 28;8(6):e66326.
[C-Q4]. Feyen D, et al. Increasing short-term cardiomyocyte progenitor cell (CMPC) survival by necrostatin-1 did not further preserve cardiac function. Cardiovasc Res. 2013 Jul 1;99(1):83-91.
[C-Q5]. Zhou K, et al. RIP1-RIP3-DRP1 pathway regulates NLRP3 inflammasome activation following subarachnoid hemorrhage. Exp Neurol. 2017 Sep;295:116-124.



[C-R1]. Marwan Fakih, et al, Phase 1 study evaluating the safety, tolerability, pharmacokinetics (PK), and efficacy of AMG 510, a novel small molecule KRASG12Cinhibitor, in advanced solid tumors. Journal of Clinical Oncology.
[C-R2]. Karen Rex, et al. Abstract 3090: In vivo characterization of AMG 510 - a potent and selective KRASG12Ccovalent small molecule inhibitor in preclinical KRASG12Ccancer models. Experimental and Molecular Therapeutics.
[C-R3]. Canon J, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019 Nov;575(7781):217-223.
[C-R4]. Brian A. Lanman, et al.Abstract 4455: Discovery of AMG 510, a first-in-human covalent inhibitor of KRASG12C for the treatment of solid tumors. Cancer Chemistry.



[C-S1]. Tentori L, et al. Combined treatment with temozolomide and poly(ADP-ribose) polymerase inhibitor enhances survival of mice bearing hematologic malignancy at the central nervous system site. Blood. 2002 Mar 15;99(6):2241-4.
[C-S2]. Mathieu V, et al. Combining Anti-Human VEGF with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia. 2008 Dec;10(12):1383-92.
[C-S3]. Perazzoli G, et al. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression. PLoS One. 2015 Oct 8;10(10):e0140131.



[C-T1]. Wang H, et al. Enhanced efficacy of Gemcitabine by indole-3-carbinol in pancreatic cell lines: the role of human equilibrativenucleoside transporter 1. Anticancer Res. 2011 Oct;31(10):3171-80.
[C-T2]. Gagnadoux F, et al. Safety of pulmonary administration of gemcitabine in rats. J Aerosol Med. 2005 Summer;18(2):198-206
[C-T3]. Yip-Schneider MT, et al. Dimethylaminoparthenolide and Gemcitabine: a survival study using a genetically engineered mouse model of pancreatic cancer. BMC Cancer. 2013 Apr 17;13:194.
[C-T4]. Yusheng Cai, et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res. 2020 Jul;30(7):574-589.



[C-U1]. Singh A, et al. Small Molecule Inhibitor of NRF2 Selectively Intervenes Therapeutic Resistance in KEAP1-Deficient NSCLC Tumors. ACS Chem Biol. 2016 Nov 18;11(11):3214-3225.
[C-U2]. Xinnong Liu, et al. Isoliquiritigenin ameliorates acute pancreatitis in mice via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev. 20 March 2018.
[C-U3]. Xian P, et al. Mesenchymal stem cell-derived exosomes as a nanotherapeutic agent for amelioration of inflammation-induced astrocyte alterations in mice.Theranostics. 2019 Aug 14;9(20):5956-5975.



[C-V1]. Luberto C, et al. Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutralsphingomyelinase. J Biol Chem. 2002 Oct 25;277(43):41128-39.
[C-V2]. Essandoh K, et al. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochim Biophys Acta. 2015 Nov;1852(11):2362-71.
[C-V3]. Chen L, et al. Integrins and heparan sulfate proteoglycans on hepatic stellate cells (HSC) are novel receptors for HSC-derived exosomes. FEBS Lett. 2016 Dec;590(23):4263-4274.
[C-V4]. Nakamura H, et al. Sphingomyelin Regulates the Activity of Secretory Phospholipase A2 in the Plasma Membrane. J Cell Biochem. 2015 Sep;116(9):1898-907.



[C-W1]. Ii M, et al. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling.
[C-W2]. Yamada M, et al. Discovery of novel and potent small-molecule inhibitors of NO and cytokine production as antisepsis agents: synthesis and biological activity of alkyl 6-(N-substituted sulfamoyl)cyclohex-1-ene-1-carboxylate. J Med Chem. 2005 Nov 17;48(23):7457-67.
[C-W3]. Yuko Ono, et al. TAK-242, a Specific Inhibitor of Toll-like Receptor 4 Signalling, Prevents Endotoxemia-Induced Skeletal Muscle Wasting in Mice. Sci Rep. 2020 Jan 20;10(1):694.



[C-X1]. Bennett BL, et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci U S A, 2001, 98(24), 13681-13686.
[C-X2]. Vaishnav D, et al. SP600125, an inhibitor of c-jun N-terminal kinase, activates CREB by a p38 MAPK-mediated pathway. Biochem Biophys Res Commun, 2003, 307(4), 855-860.
[C-X3]. Kim JA, et al. SP600125 suppresses Cdk1 and induces endoreplication directly from G2 phase, independent of JNK inhibition. Oncogene, 2010, 29(11), 1702-1716.
[C-X4]. Zheng Y, et al. JNK inhibitor SP600125 protects against lipopolysaccharide-induced acute lung injury via upregulation ofclaudin-4. Exp Ther Med. 2014 Jul;8(1):153-158.
[C-X5]. Zhang H, et al. SP600125 Suppresses Keap1 Expression and Results in NRF2-mediated Prevention of Diabetic Nephropathy. J Mol Endocrinol. J Mol Endocrinol. 2018 Feb;60(2):145-157.
[C-X6]. Yatsushige H, et al. Role of c-Jun N-terminal kinase in cerebral vasospasm after experimental subarachnoid hemorrhage. Stroke. 2005 Jul;36(7):1538-43.



[C-Y1]. Fry DW, et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther. 2004 Nov;3(11):1427-38.
[C-Y2]. Goel S, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017 Aug 24;548(7668):471-475.
[C-Y3]. Richard S Finn, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;11(5):R77.
[C-Y4]. Bollard J, et al. Palbociclib (PD-0332991), a selective CDK4/6 inhibitor, restricts tumour growth in preclinical models of hepatocellular carcinoma. Gut. 2017 Jul;66(7):1286-1296.



[C-Z1]. Cross DA, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014 Sep;4(9):1046-61.
[C-Z2]. Hirano T, et al. Pharmacological and Structural Characterizations of Naquotinib, a Novel Third-Generation EGFR Tyrosine Kinase Inhibitor, in EGFR-Mutated Non-Small Cell Lung Cancer. Mol Cancer Ther. 2018 Apr;17(4):740-750.



[D-A1]. Tran C, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science, 2009, 324 (5928), 787-790.
[D-A2]. Scher HI, et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1-2 study. Lancet, 2010, 375(9724), 1437-1446.
[D-A3]. Guerrero J, et al. Enzalutamide, an androgen receptor signaling inhibitor, induces tumor regression in a mouse model of castration-resistant prostate cancer. Prostate. 2013 Sep;73(12):1291-305.
[D-A4]. Kim TH, et al. Pharmacokinetics of enzalutamide, an anti-prostate cancer drug, in rats. Arch Pharm Res. 2015 Nov;38(11):2076-82.



[D-B1]. Lock R1, et al. Initial testing (stage 1) of the BH3 mimetic ABT-263 by the pediatric preclinical testing program. Pediatr Blood Cancer. 2008 Jun;50(6):1181-1189.
[D-B2]. Wong M, et al. Navitoclax (ABT-263) reduces Bcl-x(L)-mediated chemoresistance in ovarian cancer models.Mol Cancer Ther. 2012 Apr;11(4):1026-1035.
[D-B3]. Chen J, et al. The Bcl-2/Bcl-X(L)/Bcl-w inhibitor, navitoclax, enhances the activity of chemotherapeutic agents in vitro and in vivo. Mol Cancer Ther. 2011 Dec;10(12):2340-9.



[D-C1]. Nakamura M, et al. Decitabine inhibits tumor cell proliferation and up-regulates E-cadherin expression in Epstein-Barr virus-associated gastric cancer. J Med Virol. 2016 Jul 19.
[D-C2]. Parker WB. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev. 2009 Jul;109(7):2880-93.
[D-C3]. Hagemann S, et al. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS One. 2011 Mar 7;6(3):e17388.
[D-C4]. Requena CE, et al. The nucleotidohydrolases DCTPP1 and dUTPase are involved in the cellular response to decitabine. Biochem J. 2016 Jun 20.
[D-C5]. Terse P, et al. Subchronic oral toxicity study of decitabine in combination with tetrahydrouridine in CD-1 mice. Int J Toxicol. 2014 Mar-Apr;33(2):75-85.
[D-C6]. Yu J, et al. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J Clin Invest. 2018 Jun 1;128(6):2376-2388.
[D-C7]. Wang LX, et al. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumorspecific cytotoxic T lymphocyte responses. PLoS One. 2013 May 9;8(5):e62924.



[D-D1]. Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene. 2002 Aug 12;21(35):5483-95.
[D-D2]. Creusot F, et al. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidineand 5-aza-2'-deoxycytidine. J Biol Chem. 1982 Feb 25;257(4):2041-8.
[D-D3]. Li LH,et al. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res. 1970 Nov;30(11):2760-9.
[D-D4]. Marycz K, et al. 5-Azacytidine and Resveratrol Enhance Chondrogenic Differentiation of Metabolic Syndrome-Derived Mesenchymal Stem Cells by Modulating Autophagy.Oxid Med Cell Longev. 2019 May 12;2019:1523140.



[D-E1]. Filippakopoulos P, et al. Selective inhibition of BET bromodomains. Nature. 2010 Dec 23;468(7327):1067-73.
[D-E2]. Sakamaki JI, et al. Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and LysosomalFunction. Mol Cell. 2017 May 18;66(4):517-532.e9.
[D-E3]. Matzuk MM, et al. Small-molecule inhibition of BRDT for male contraception. Cell. 2012 Aug 17;150(4):673-84.



[D-F1]. Li Yan, et al. Abstract #DDT01-1: MK-2206: A potent oral allosteric AKT inhibitor. 2009.
[D-F2]. Xing Y, et al. Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res. 2019 Jul 5;21(1):78.
[D-F3]. Zhao YY, et al. Effects of an oral allosteric AKT inhibitor (MK-2206) on human nasopharyngeal cancer in vitro and in vivo. Drug Des Devel Ther. 2014 Oct 10;8:1827-37.
[D-F4]. Agarwal E, et al. Akt inhibitor MK-2206 promotes anti-tumor activity and cell death by modulation of AIF and Ezrin in colorectal cancer. BMC Cancer. 2014 Mar 1;14:145.



[D-G1]. Quintas-Cardama A, et al. Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood, 2010, 115(15), 3109-3117.
[D-G2]. Verstovsek S, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med, 2012, 366(9), 799-807.
[D-G3]. Tavallai M, et al. Rationally Repurposing Ruxolitinib (Jakafi (®)) as a Solid Tumor Therapeutic.Front Oncol. 2016 Jun 13;6:142.



[D-H1]. Reiners JJ Jr, et al. PD98059 is an equipotent antagonist of the aryl hydrocarbon receptor and inhibitor of mitogen-activated protein kinase kinase. Mol Pharmacol. 1998 Mar;53(3):438-45.
[D-H2]. Alessi DR, et al. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem, 1995, 270(46), 27489-27494.
[D-H3]. Jia Luo, et al. DUSP5 (dual-specificity protein phosphatase 5) suppresses BCG-induced autophagy via ERK 1/2 signaling pathway.
[D-H4]. Di Paola R, et al. PD98059, a specific MAP kinase inhibitor, attenuates multiple organ dysfunction syndrome/failure (MODS) induced by zymosan in mice. Pharmacol Res. 2010 Feb;61(2):175-87.
[D-H5]. Kojima K, et al. Mitogen-activated protein kinase kinase inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leukemia cells. Cancer Res. 2007 Apr 1;67(7):3210-9.
[D-H6]. Kim KY, et al. Inhibition of Autophagy Promotes Salinomycin-Induced Apoptosis via Reactive Oxygen Species-Mediated PI3K/AKT/mTOR and ERK/p38 MAPK-Dependent Signaling in Human Prostate Cancer Cells. Int J Mol Sci. 2017 May 18;18(5). pii: E1088.
[D-H7]. Sarah J Parker, et al. Inhibition of TDP-43 accumulation by bis(thiosemicarbazonato)-copper complexes. PLoS One. 2012;7(8):e42277.



[D-I1]. Wu BN, et al. KMUP-1, a xanthine derivative, induces relaxation of guinea-pig isolated trachea: the role of the epithelium, cyclic nucleotides and K+ channels. Br J Pharmacol. 2004 Aug;142(7):1105-14
[D-I2]. Wei Y, et al. Angiotensin II type 2 receptor regulates ROMK-like K+ channel activity in the renal cortical collecting duct during high dietary K+ adaptation. Am J Physiol Renal Physiol. 2014 Oct 1;307(7):F833-43
[D-I3]. Hosseini A, et al. Differential metabolic effects of novel cilostamide analogs, methyl carbostiryl derivatives, on mouse and hyperglycemic rat. Iran J Basic Med Sci. 2012 Jul;15(4):916-25.
[D-I4]. Crosswhite P, et al. Inhibition of phosphodiesterase-1 attenuates cold-induced pulmonary hypertension. Hypertension. 2013 Mar;61(3):585-92.



[D-J1]. Morishita T, et al. The photosensitizer verteporfin has light-independent anti-leukemic activity for Ph-positive acute lymphoblastic leukemia and synergistically works with BMS-354825. Oncotarget. 2016 Aug 2.
[D-J2]. Pan W, et al. Verteporfin can Reverse the NSC 125973 Resistance Induced by YAP Over-Expression in HCT-8/T Cells without Photoactivation through Inhibiting YAP Expression. Cell Physiol Biochem. 2016;39(2):481-90.
[D-J3]. Donohue E, et al. The autophagy inhibitor verteporfin moderately enhances the antitumor activity of gemcitabine in a pancreatic ductal adenocarcinoma model.J Cancer. 2013 Aug 28;4(7):585-96.



[D-K1]. Cassidy-Stone A, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008 Feb;14(2):193-204.
[D-K2]. Tanaka A, et al. A chemical inhibitor of DRP1 uncouples mitochondrial fission and apoptosis. Mol Cell. 2008 Feb 29;29(4):409-10.
[D-K3]. Park SW, et al. A selective inhibitor of drp1, mdivi-1, increases retinal ganglion cell survival in acute ischemic mouse retina. Invest Ophthalmol Vis Sci. 2011 Apr 27;52(5):2837-43.



[D-L1]. Soraya H, et al. Acute treatment with metformin improves cardiac function following isoproterenol induced myocardial infarction in rats. Pharmacol Rep. 2012;64(6):1476-84.
[D-L2]. Quaile MP, et al. Toxicity and toxicokinetics of metformin in rats. Toxicol Appl Pharmacol. 2010 Mar 15;243(3):340-7.
[D-L3]. Xue J, et al. Metformin inhibits growth of eutopic stromal cells from adenomyotic endometrium via AMPK activation and subsequent inhibition of AKT phosphorylation: a possible role in the treatment of adenomyosis. Reproduction. 2013 Aug 21;146(4):397-406.
[D-L4]. Otto M, et al. Metformin inhibits glycogen synthesis and gluconeogenesis in cultured rat hepatocytes. Diabetes Obes Metab. 2003 May;5(3):189-94.
[D-L5]. Avci CB, et al. Therapeutic potential of an anti-diabetic drug, metformin: alteration of miRNA expression in prostate cancer cells. Asian Pac J Cancer Prev. 2013;14(2):765-8.



[D-M1]. Dovey HF, et al. Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem. 2001 Jan;76(1):173-81.
[D-M2]. Li S, et al. DAPT protects brain against cerebral ischemia by down-regulating the expression of Notch 1 and nuclear factor κB in rats. Neurol Sci. 2012 Dec;33(6):1257-64.
[D-M3]. Zhou JX, et al. γ-secretase inhibition combined with NSC 119875 enhances apoptosis of nasopharyngeal carcinoma cells.Exp Ther Med. 2012 Feb;3(2):357-361.
[D-M4]. Tanimizu N, et al. Intrahepatic bile ducts are developed through formation of homogeneous continuous luminal network and its dynamic rearrangement in mice. Hepatology. 2016 Jul;64(1):175-88.
[D-M5]. Michael T. Chang, et al. Notch Drives Proliferation And Radiation Resistance Of Cancer Stem Cells In Adenoid Cystic Carcinoma. Yale University. January 2016.
[D-M6]. Majumder S, et al. Shifts in podocyte histone H3K27me3 regulate mouse and human glomerular disease. J Clin Invest. 2018 Jan 2;128(1):483-499.
[D-M7]. Yixin Tao, et al. β-catenin activation in hair follicle dermal stem cells induces ectopic hair outgrowth and skin fibrosis. J Mol Cell Biol. 2018 May 16.



[D-N1]. Wakeling AE, et al. ZD1839: an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res. 2002 Oct 15;62(20):5749-54.
[D-N2]. Pedersen MW, et al. Differential response to gefitinib of cells expressing normal EGFR and the mutant EGFRvIII. Br J Cancer. 2005 Oct 17;93(8):915-23.
[D-N3]. Muhammad Tariq, et al. Gefitinib inhibits M2-like polarization of tumor-associated macrophages in Lewis lung cancer by targeting the STAT6 signaling pathway. Acta Pharmacol Sin. 2017 Nov;38(11):1501-1511.
[D-N4]. Mark S Cragg, et al. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics. PLoS Med. 2007 Oct;4(10):1681-89; discussion 1690.
[D-N5]. Marie P Piechocki, et al. Gefitinib prevents cancer progression in mice expressing the activated rat HER2/neu. Int J Cancer. 2008 Apr 15;122(8):1722-9.
[D-N6]. Tomoya Takenaka, et al. Effects of gefitinib treatment on cellular uptake of extracellular vesicles in EGFR-mutant non-small cell lung cancer cells. Int J Pharm. 2019 Dec 15;572:118762.
[D-N7]. Amin Li, et al. Gefitinib sensitization of cisplatin-resistant wild-type EGFR non-small cell lung cancer cells. J Cancer Res Clin Oncol. 2020 Jul;146(7):1737-1749.



[D-O1]. Kwon D, et al. Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) suppresses STING-mediated DNA sensing pathway through inducing mitochondrial fission. Biochem Biophys Res Commun. 2017 Aug 30. pii: S0006-291X(17)31704-7.
[D-O2]. Sinha D, et al. Synergistic efficacy of Bisbenzimidazole and Carbonyl Cyanide 3-Chlorophenylhydrazonecombination against MDR bacterial strains. Sci Rep. 2017 Mar 17;7:44419.
[D-O3]. Kawamoto A, et al. Measurement of technetium-99m sestamibi signals in rats administered a mitochondrial uncoupler and in a rat model of heart failure. PLoS One. 2015 Jan 16;10(1):e0117091.
[D-O4]. Kondapalli C, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012 May;2(5):120080.
[D-O5]. Haifeng Jiao, et al. Mitocytosis, a migrasome-mediated mitochondrial quality-control process. Cell. 2021 May 27;184(11):2896-2910.e13.



[D-P1]. Furet P, et al. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg Med Chem Lett. 2013 Jul 1;23(13):3741-8.
[D-P2]. Fritsch C, et al. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther. 2014 May;13(5):1117-29.
[D-P3]. Gobin B, et al. BYL719, a new α-specific PI3K inhibitor: single administration and in combination with conventional chemotherapy for the treatment of osteosarcoma. Int J Cancer. 2015 Feb 15;136(4):784-96.



[D-Q1]. Tojo M, et al. The ALK-5 inhibitor A-83-01 inhibits Smad signaling and epithelial-to-mesenchymal transition by transforming growth factor-beta. Cancer Sci. 2005 Nov;96(11):791-800.
[D-Q2]. Yamamura S, et al. The activated transforming growth factor-beta signaling pathway in peritoneal metastases is a potential therapeutic target in ovarian cancer. Int J Cancer. 2012 Jan 1;130(1):20-8.
[D-Q3]. Taniguchi Y, et al. Enhanced antitumor efficacy of folate-linked liposomal Adriamycin with TGF-β type I receptor inhibitor. Cancer Sci. 2010 Oct;101(10):2207-13.



[D-R1]. Mori N, et al. Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines andprimary adult T-cell leukemia cells. Blood. 2002 Sep 1;100(5):1828-1834.
[D-R2]. Ritorto MS, et al. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat Commun. 2014 Aug 27;5:4763.
[D-R3]. Strickson S, et al. The anti-inflammatory drug BAY 11-7082 suppresses the MyD88-dependent signalling network by targeting the ubiquitin system. Biochem J. 2013 May 1;451(3):427-437.
[D-R4]. Pierce JW, et al. Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J Biol Chem. 1997 Aug 22;272(34):21096-103.
[D-R5]. Jun Jacob Hu, et al. Identification of pyroptosis inhibitors that target a reactive cysteine in gasdermin D. The Preprint Server For Biology, 2018,Jul. 10.
[D-R6]. Chen L , et al. BAY 11-7082, a nuclear factor-κB inhibitor, induces apoptosis and S phase arrest in gastriccancer cells. J Gastroenterol. 2014 May;49(5):864-74.



[D-S1]. Lehmann JM, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J Biol Chem. 1995 Jun 2;270(22):12953-6.
[D-S2]. Willson TM, et al. The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J Med Chem. 1996 Feb 2;39(3):665-8.
[D-S3]. Thouennon E, et al. Rosiglitazone-activated PPARγ induces neurotrophic factor-α1 transcription contributing to neuroprotection. J Neurochem. 2015 Aug;134(3):463-70.
[D-S4]. Majeed Y, et al. Rapid and contrasting effects of rosiglitazone on transient receptor potential TRPM3 and TRPC5 channels. Mol Pharmacol. 2011 Jun;79(6):1023-30.
[D-S5]. Ateyya H, et al. Beneficial effects of rosiglitazone and losartan combination in diabetic rats. Can J Physiol Pharmacol. 2018 Mar;96(3):215-220.
[D-S6]. Haoshen Feng, et al. Rosiglitazone ameliorated airway inflammation induced by cigarette smoke via inhibiting the M1 macrophage polarization by activating PPARγ and RXRα. Int Immunopharmacol. 2021 Aug;97:107809.
[D-S7]. Zehua Wang, et al. Rosiglitazone ameliorates senescence and promotes apoptosis in ovarian cancer induced by olaparib. Cancer Chemother Pharmacol. 2020 Feb;85(2):273-284.



[D-T1]. Eusebio Manchado, et al. A combinatorial strategy for treating KRAS-mutant lung cancer. Nature. 2016 Jun 30;534(7609):647-51.
[D-T2]. Anna-Luisa Luger, et al. Doxycycline Impairs Mitochondrial Function and Protects Human Glioma Cells from Hypoxia-Induced Cell Death: Implications of Using Tet-Inducible Systems. Int J Mol Sci. 2018 May 17;19(5):1504.
[D-T3]. Wilfried Briest, et al. Doxycycline ameliorates the susceptibility to aortic lesions in a mouse model for the vascular type of Ehlers-Danlos syndrome. J Pharmacol Exp Ther. 2011 Jun;337(3):621-7.
[D-T4]. Ethan Ahler, et al. Doxycycline alters metabolism and proliferation of human cell lines. PLoS One. 2013 May 31;8(5):e64561.
[D-T5]. Le Zhang, et al. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer. Cell Cycle. 2017 Apr 18;16(8):737-745.

Life Technologies (India) Pvt Ltd. 

306, Agarwal City Mall, opposite M2K Pitampura, Delhi-110034 (India)
Tel # +91-11-4220-8000; 4220-8111; 4220-8222 Fax# +91-11-4220-8444,
Mobile# +91-98105-21400
Email# [email protected]