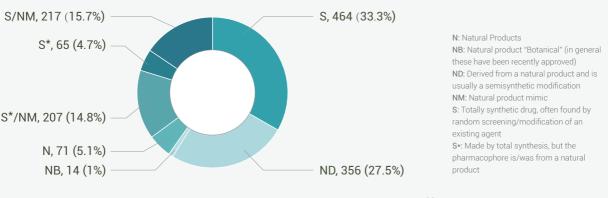


www.MedChemExpress.com

Natural Products

8,000+ Natural Products — Optimal Solutions for Drug Lead Discovery


Natural Products

Introduction to Natural Products

Natural products are biological secondary metabolites isolated from **animals**, **plants**, **marine organisms** and **microorganisms**, as well as endogenous physiologically active compounds. Sertuener, a German pharmacist, first isolated morphine from poppies in 1806, after that modern medicinal chemistry began to develop. Since then, the research on natural products has deepened it all stages; from extraction, separation, structural identification, to studying the pharmacological activity of the compounds. Natural products have also become important sources for novel drug development, due to their diverse structures and extensive pharmacological activities.

Since the 1980s, due to the invention and utilization of Combinatorial Chemistry, High Throughput Screening (HTS) and other new technologies, researchers considered natural products to be a laborious and time-consuming source for drug discovery. However to date, the only new chemical entity discovered through these new technologies is Sorafenib, which was approved by the FDA in 2005 for renal cell cancer.

It was reported that from 1981 to 2019, 33.6% of small molecule-based drugs were derived from natural products or derivatives of natural products^[1].

The sources of Approved drug from 1981 to 2019^[1].

Status and Role of Natural Products in Drug Development

Natural products have always played an important role in the development of drugs, and numerous natural products have been developed into drugs:

In 1785, William Withering published his work about treating heart disease patients with the cardiotonic extract of digitalis. This work led to the discovery of **Digoxin**, which is now clinically used to treat arrhythmias and congestive heart failure. In 1806, Freidrich Serturner isolated morphine from the poppies, and this work led to the development of morphine as a dose-controlled narcotic.

In 1928, Alexander Fleming discovered **Penicillin** from penicillium. It was this unexpected discovery that opened a new chapter in the use of penicillin for the treatment of infectious diseases. Since then, numerous antibiotics have

References: [1] J Nat Prod. 2020, 83(3): 770-803.

been discovered and applicated. In 2015, Youyou Tu won the Nobel Prize in Physiology or Medicine for her work on **Artemisinin**, which is undoubtedly another remarkable achievement in the development of drugs from natural products.

In addition, natural products have been reported as anticancer drugs, such as **Paclitaxel** and its derivatives from *Taxus chinensis*, Vincristine and Conophylline from *Catharanthus roseus*, Camptothecin and its analogues from *Camptotheca acuminata*.

Natural products have irreplaceable advantages over synthetic compounds:

(1) The active substances produced by metabolism of plants and other organisms are used as a defense system and to perform various physiological functions; (2) The chemical structure of many natural products is so complex that it is difficult to obtain them by artificial synthesis; (3) Most of the natural products have natural chirality, which are more drug-like than most of the synthetic compounds without chirality; (4) They have natural affinity and "natural" feasibility of participating in various physiological processes in organisms; (5) Natural products also contribute to the discovery of new mechanisms of drug action.

All of these factors depict the incomparable advantages of natural products in influencing human physiology, giving natural products an irreplaceable status in the research and development of new drugs, as well as being an important source of discovering candidate drugs and drug lead structures.

Applications of Natural Products

- Research and Development of New Drugs

Due to their diverse structures and excellent biological activities, natural products have always been an important source of drug lead compounds and play a paramount role in the development of new drugs. Drugs developed from natural products in the past were major breakthroughs, such as **Penicillin, Artemisinin, Paclitaxel**, etc. Analogs developed from natural products are also important sources of drugs, such as Rosuvastatin, which was developed from Mevastatin^[2].

Moreover, the discovery of a large number of natural products provides a basis for their further optimization, development and utilization.

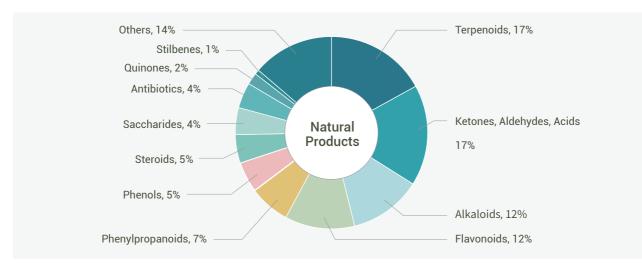
- Cometics and Skin Care Industry

In recent years, skin care products and cosmetics with natural ingredients are increasingly favored, giving natural products a wider application prospect in the cosmetics and skin care industry. For example, plant polysaccharides have the biological potential of moisturizing^[3], sunscreen, anti-oxidant^[4] and anti-aging whilst; plant triterpenoids show anti-inflammatory, analgesic, bacteriostatic and anti-allergic activities^[5].

- Food and Health Products

Natural pigments have been widely used in food and health products because of their reduced side effects and higher safety profile. In recent years, there are numerous health care products featuring natural ingredients. *Moringa oleifera*, for example, is rich in protein, vitamin A, essential amino acids, antioxidants and other ingredients, and has anti-inflammatory and antioxidant activity^[6], hence it has become one of the important sources of health care products development.

[4] Carbohydrate Polymers, 2018, 183:91-101.



Our Advantages

Rich in Sources and Structures

The natural products of MCE come from plants, animals, microorganisms and marine organisms; plant sources include hundreds of plants such as *Panax ginseng*, *Glycyrrhiza uralensis* and *Astragalus membranaceus*, etc. Animal origins includes toads, cantharides and musk, etc. Microbial sources include a variety of bacteria and fungi. The structural types of natural products cover almost all major structural groups of natural products, including dozens of structural categories such as flavonoids, alkaloids, quinones and many more.

Large Number of Products, Continuous Updating

MCE currently offers 8,000+ natural products which are continuously updated with 1,000+ natural products per year.

Strict Quality Standard Control System

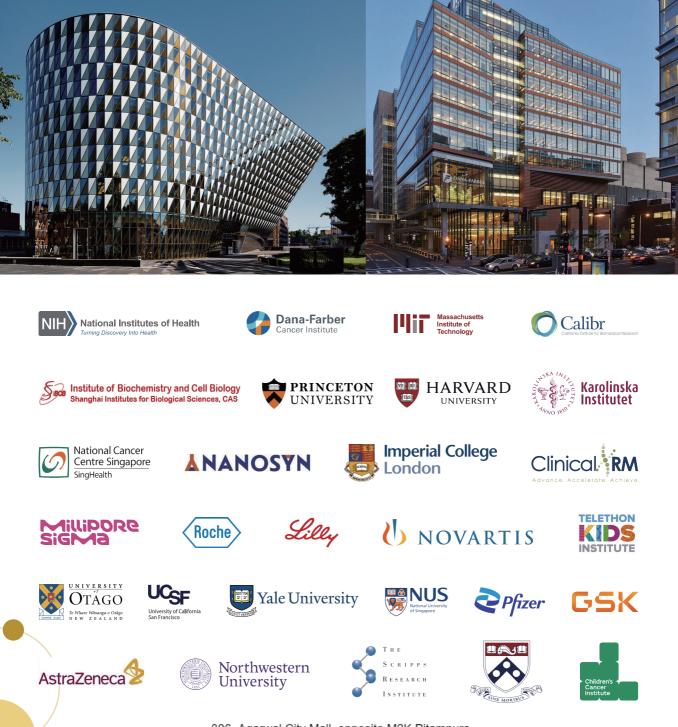
Certified by ISO 9001 quality management system, the company has a professional quality research team, with rich experience in quality assurance and quality control, equipped with hundreds of advanced testing equipment, to ensure the high quality and purity of each product.

Citations in Prestigious Scientific Journals

The biological activity of our products have been verified by scientists from all over the world and have been cited in numerous prestigious scientific journals. Global top journals (*Nature, Science, Cell*, etc.) and pharmaceutical patents have published the scientific research achievements of MCE customers.

Publications Citing Use of MCE Products

Nature. 2022 Nov;611(7936):603-613. Nature. 2022 Oct;610(7933):761-767. Nature. 2022 Oct;610(7931):394-401. Nature. 2022 Oct;610(7932):555-561. Nature. 2022 Oct;610(7931):366-372. Nature. 2022 Sep;609(7928):829-834. Nature. 2022 Sep;609(7928):785-792. Nature. 2022 Aug;608(7923):609-617. Nature. 2022 Aug;608(7922):413-420. Nature. 2022 Jul;607(7917):135-141. Nature. 2022 Jul;607(7917):135-141. Nature. 2022 Jun;606(7915):776-784. Nature. 2022 May;605(7910):567-574. Science. 2022 Dec 2;378(6623):eabo5503. Science. 2022 Nov 18;378(6621):eabq7361.


Science. 2022 Oct 14;378(6616):eabq0132.
Science. 2022 Mar 18;375(6586):1254-1261.
Science. 2022 Jul 8;377(6602):eabg9302.
Science. 2021 Oct;374(6563):eabf3067.
Cell. 2022 Nov 17;S0092-8674(22)01370-8.
Cell. 2022 Nov 10;185(23):4361-4375.e19.
Cell. 2022 Sep 1;185(18):3356-3374.e22.
Cell. 2022 Aug 18;185(17):3124-3137.e15.
Cell. 2022 Aug 4;185(16):3008-3024.e16.
Cell. 2022 Jun 23;185(13):2234-2247.e17.
Cell. 2022 Jun 23;185(13):2354-2369.e17.
Cell. 2022 Aug 2;185(9):1521-1538.e18.
Cell. 2022 Jan 6;185(1):158-168.e11.
Cell. 2021 Oct 28;184(22):5670-5685.e23.

MCE Global Partners

Table of Contents

Structural Classification

Alkaloids	02
Saccharides	05
Flavones	06
Terpenes	10
Quinones	12
Phenylpropanoids	14

eroids	15
ilbenes	17
nenols onophenols lyphenols nthones	18

Source Classification

P

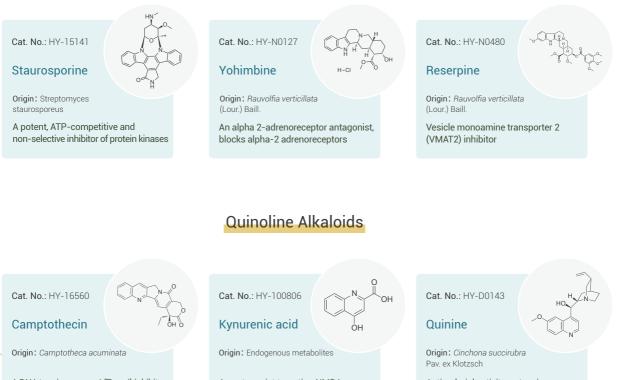
Panax ginseng	21
Glycyrrhiza uralensis	23
Astragalus membranaceus	24
Seeds of Vitis vinifera	25
Ginkgo biloba	26
Epimedium brevicornu	27
Rhodiola rosea	28
Panax pseudo-ginseng ····	29
Bupleurum chinensis	30
Salvia miltiorrhiza	31
Schisandra chinensis	32
Siraitia grosvenorii	33
Animals	34

Natural Product Related Compound Library

Natural Product library	38
Terpenoids Library	39
Alkaloids Library	39
Flavonoids Library	39
Phenols Library	39
Natural Product like Compound Library	40
Traditional Chinese Medicine	Э
Monomer Library	41
	41
Medicine Food Homology	41 41
Medicine Food Homology	41
Medicine Food Homology Compound Library	41 lite
Medicine Food Homology Compound Library Human Endogenous metabo	41 lite
Medicine Food Homology Compound Library Human Endogenous metabo Compound Library	41 lite 42

306, Agarwal City Mall, opposite M2K Pitampura, Delhi-110034 (India)

Natural antibiotics


Alkaloids

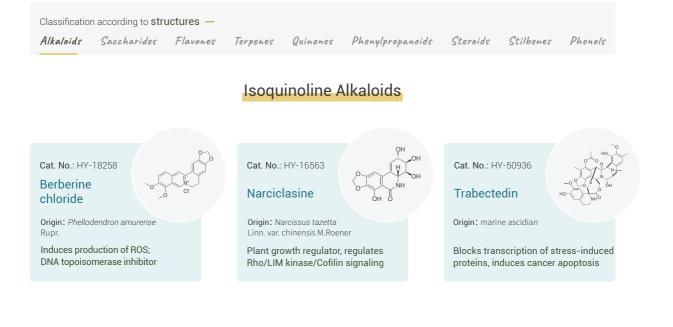
Alkaloids refer to a class of nitrogenous organic matter (except vitamins, amino acids, peptides, etc.) derived from the natural sources. The vast majority of alkaloids are obtained from plants (such as camptothecin from *Camptotheca acuminata*, Vinblastine from *Catharanthus roseus*, etc.), and a few from animals (such as adrenaline in the human body).

Most alkaloids have excellent physiological activities and are effective components in many Chinese herbal medicines, such as **Morphine** (the analgesic substance in *Papaver somniferum*), and **Ephedrine** (the anti-asthmatic substance in *Ephedra sinica*), **Berberine** (an anti-inflammatory compound in *Coptis chinensis*), **Quinine** (an antimalarial compound in *Cinchona succirubra*) and **Reserpine** (anti-hypertensive agent in *Rauvolfia verticillata*), etc.

In terms of structure, most alkaloids have complex ring structures, and most of the nitrogen atoms are bound in the ring (such as indole alkaloids). Some nitrogen atoms of alkaloids exist in chain-like structures (e.g., Adrenaline). Alkaloids can be divided into several subgroups according to the difference in nitrogen-containing basic parent nuclei:

Indole Alkaloids

Antimalarial activity, potassium channel inhibitor


306, Agarwal City Mall, opposite M2K Pitampura, Delhi-110034 (India)

A DNA topoisomerase I (Topo I) inhibitor, exhibits powerful antineoplastic activity

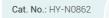
An antagonist targeting NMDA, glutamate, $\alpha7$ nAChR

02

Cat. No.: HY-N0750

Monocrotaline

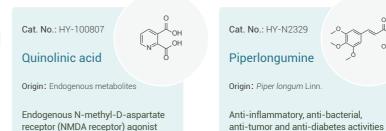
Origin: Crotalaria pallida Ait.


Induces pulmonary hypertension in rodents

Origin: Digenea simplex

Active agonist of excitatory amino acid receptor subtypes in the CNS

Pyrrole Alkaloids



Harringtonine

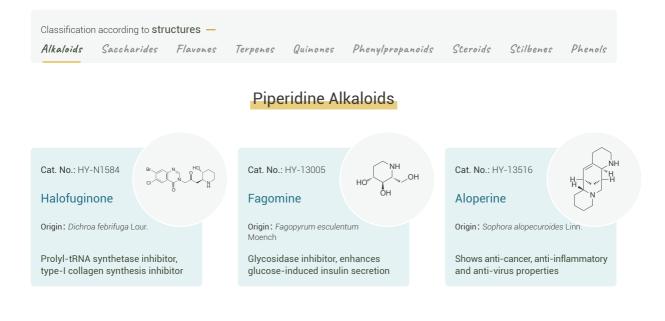
Origin: Cephalotaxus fortune Hooker

Inhibits protein synthesis, resists chikungunya virus (CHIKV)

Pyridine Alkaloids

306, Agarwal City Mall, opposite M2K Pitampura, Delhi-110034 (India)

Origin: Endogenous metabolites


Vitamin B3, a substrate of an enzyme that catalyzes non-redox reactions

receptor (NMDA receptor) agonist

MCE Master of Bioactive Molecules

Alkaloid Dimers

Cat. No.: HY-N0488

Vincristine sulfate

Origin: Catharanthus roseus (Linn.) G. Don

Inhibits microtubule formation in mitotic spindle

Tetrandrine

Origin: Stephania tetrandra S. Moore

Inhibits voltage-gated Ca²⁺ current (ICa) and Ca²⁺-activated K⁺ current

Chaetocin

Origin: Chaetomium species

Histone methyltransferase (HMT) SU (VAR) 3-9 specific inhibitor

Other Alkaloids

Pilocarpine HCl

HCI

Origin: Pilocarpus

Effective M3 muscarinic receptor agonist

Rocaglamide

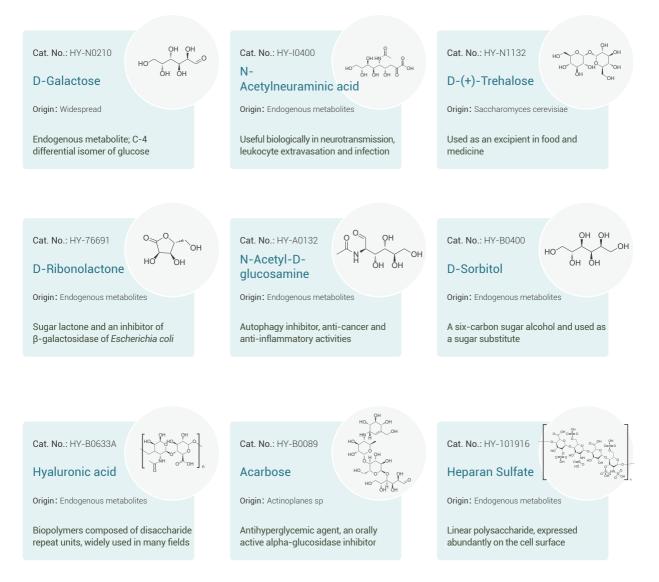
Origin: Aglaia elliptifolia

NF-ĸB activation inhibitor, heat shock factor 1 (HSF1) activation inhibitor

Cat. No.: HY-B1205

Atropine

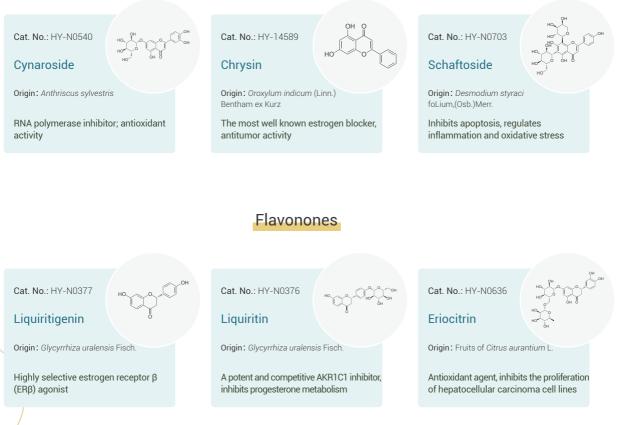
Origin: Solanaceae


Competitive muscarinic acetylcholine receptor (mAChR) antagonist

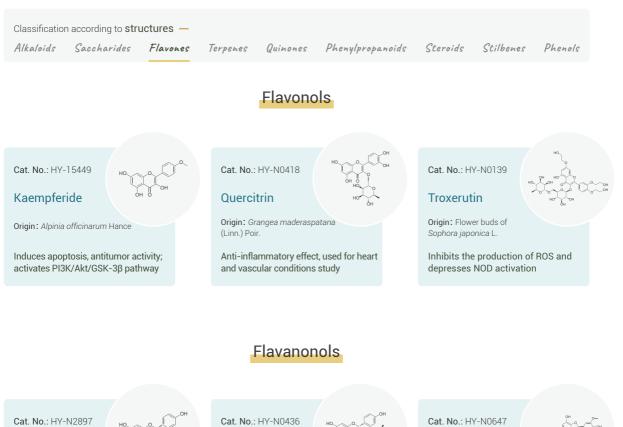
Saccharides

Saccharides are polyhydroxy aldehydes, polyhydroxy ketones and organic compounds that can be hydrolyzed into polyhydroxy aldehydes and ketones. These can be divided into monosaccharides, disaccharides and polysaccharides according to the number of sugar units they contain.

Saccharides exist widely in nature, such as cellulose and starch from plants, glucose and glycogen from animals. They play an important role in the functionality of living organisms. They are not only structural components and main energy source of organisms, but can also be converted into other substances in the body (such as amino acids, nucleotides, etc.), and can be combined with proteins to form glycoproteins becoming signaling molecules.


Flavonoids

Flavonoids refer to a series of compounds synthesized by connecting two benzene rings (often referred to as A ring and B ring) with three central carbons. Flavonoids widely exists in nature. Most of them combine with saccharides to form flavonoid glycosides in plants, and a few of them exist as aglycones.


Flavonoids have a wide range of activities. For example, **Rutin**, a common flavonoid in nature, has antioxidant, anti-inflammatory and antiviral activity, and Silymarin derived from *Silybum marianum* has antiviral and anti-tumor effects.

From structural perspective, the benzene ring of flavonoids is usually connected with multiple phenolic hydroxyl groups, so flavonoids also belong to a large category of phenolic compounds. Due to the presence of phenolic hydroxyl group in its structure, flavonoids mostly have antioxidant activity. Generally, flavonoids can be divided into several subgroups such as flavones, flavonones, chalcone and isoflavones.

Flavones

Dihydrokaempferol

Origin: Euonymus alatus (Thunb.) Sieb

Induces apoptosis and inhibits Bcl-2 and Bcl-xL expression

Cat. No.: HY-N0436

Engeletin

Origin: Smilax glabra Roxb.

Inhibits NF-kB signaling-pathway activation

Cat. No.: HY-N0647

Silychristin

Origin: Silybum marianum (Linn.) Gaertn

A potent inhibitor of the thyroid hormone transporter MCT8

Chalcones

Cat. No.: HY-N4187

Licochalcone D

Origin: Glycyrrhiza uralensis Fisch.

A potent and orally active inhibitor of NF-kappaB (NF-κB) p65

Butein

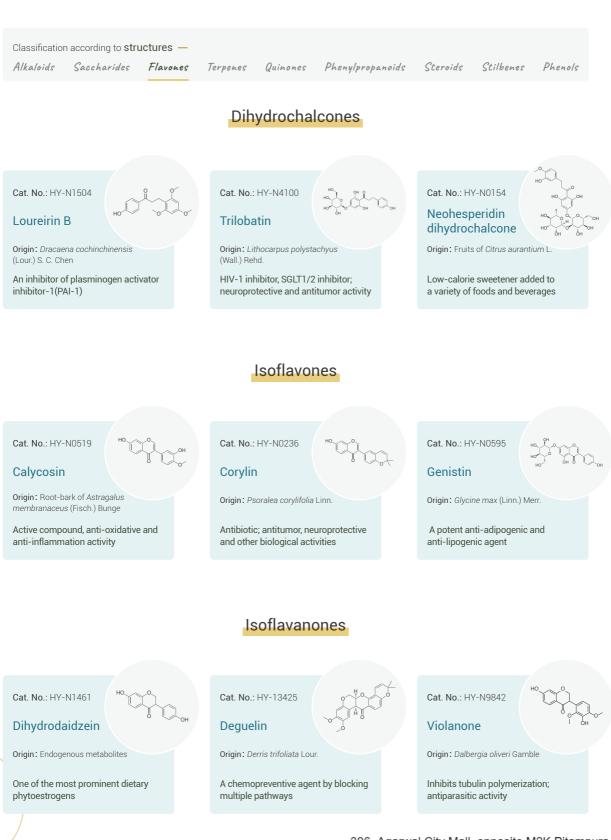
Origin: Toxicodendron vernicifluum (Stokes)F. A.Barkley

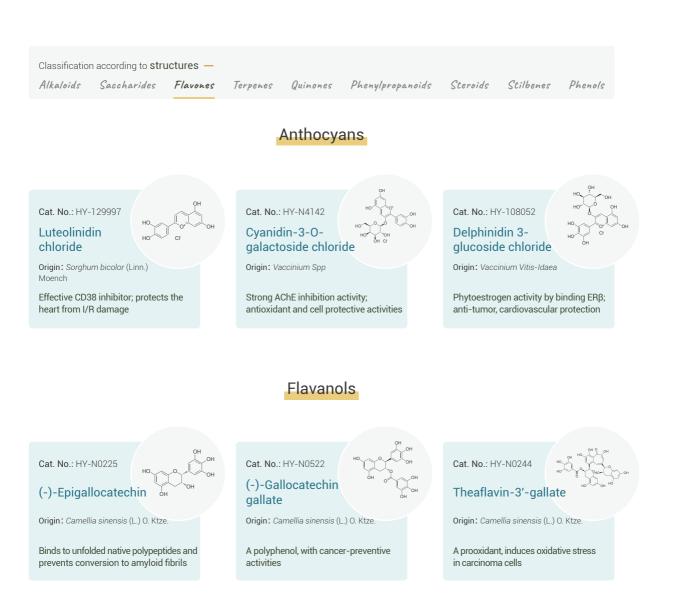
cAMP specific PDE inhibitor, protein tyrosine kinase inhibitor

Cat. No.: HY-N0567

Hydroxysafflor yellow A

Origin: Carthamus tinctorius Linn.


Antitumor, neuroprotective, anti-fibrosis, anti-inflammatory activities


Master of Bioactive Molecules

MCE

08

Biflavones

Amentoflavone

Origin: Selaginella tamariscina (P. Beauv.) Spring

A potent and orally active GABA(A) negative modulator

Hinokiflavone

Origin: Selaginella tamariscina (P. Beauv.) Spring

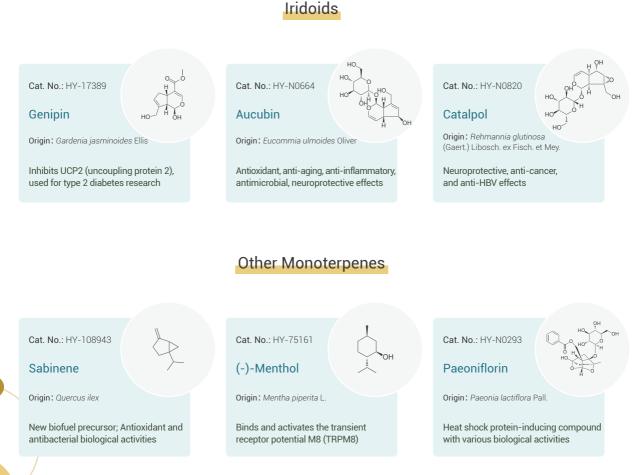
Regulator of pre-mRNA splicing; apoptosis induction and antitumor activity

Cat. No.: HY-N0795

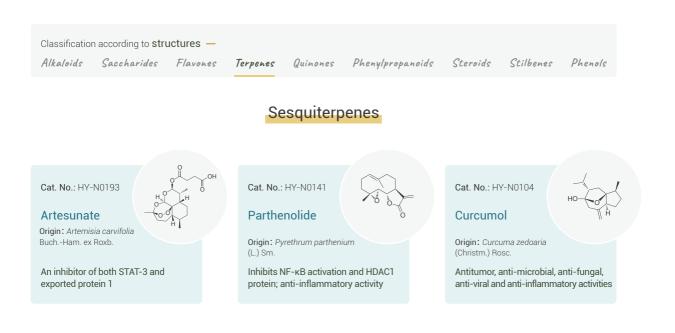
Procyanidin B1

Origin: Seeds of Vitis vinifera Linn.

Binds to TLR4/MD-2 complex, and has anti-inflammatory activity



Terpenoids


Terpenoids are derived from mevaleryl acid and their molecular formula can be written as (C5H8) n. The skeleton is usually based on five carbons, with a few exceptions (possibly due to isomerization or degradation reactions during formation). Most terpenoids are oxygen-containing derivatives; some exist in the form of glycosides, such as iridoid glycosides. Some terpenoids contain nitrogen atoms and are called terpenoid alkaloids (e.g., Aconitine). They are widely distributed in plants, animals and marine organisms.

Terpenoids are characterized by diverse skeletons, a large number of species and varied structures, and a wide range of pharmacological activities, such as Paclitaxel from *Taxus chinensis*, Artemisinin from *Artemisia annua*, and Triptolide from *Tripterygium wilfordii*.

Terpenoids can be divided into monoterpenes, sesquiterpenes, diterpenoids and triterpenoids according to the number of isoprene units they contain. Monoterpenes are one of the main components of plant volatile oils, whereas iridoids are a kind of monoterpenes with special structures.

Diterpenoids

Cat. No.: HY-15371

Forskolin

Origin: Coleus forskohlii (Willd.) Briq.

An adenylate cyclase activator; induces intracellular cAMP formation

Triptolide

Origin: Tripterygium wilfordii Hook. f.

Antiproliferative and antitumor effects, NF-κB activation inhibitor

Triterpenes

Paclitaxel

Cat. No.: HY-B0015

Origin: *Taxus chinensis* (Pilger) Rehd.

Antineoplastic agent and stabilizes tubulin polymerization

Cat. No.: HY-13067

Tripterin

Origin: *Tripterygium wilfordii* Hook. f.

Inhibits the chymotrypsin-like activity of 20S proteasome

Cat. No.: HY-N0184

Glycyrrhizic acid

Origin: Glycyrrhiza uralensis Fisch.

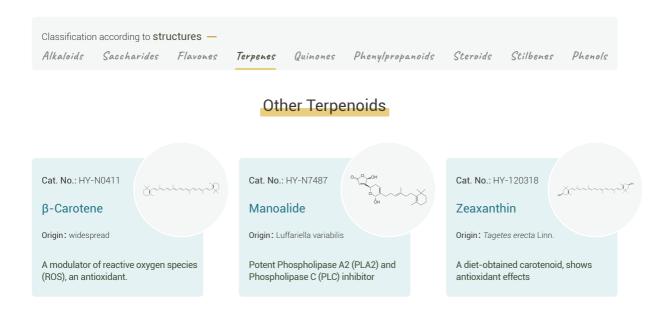
HMGB1 antagonist; Anti-tumor and anti-diabetes activities

Cat. No.: HY-N0431

Astragaloside IV

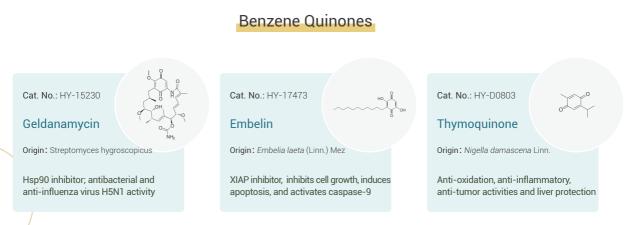
Origin: Root-bark of Astragalus membranaceus (Fisch.) Bunge

Suppresses activation of ERK1/2 and JNK, downregulates matrix metalloproteases

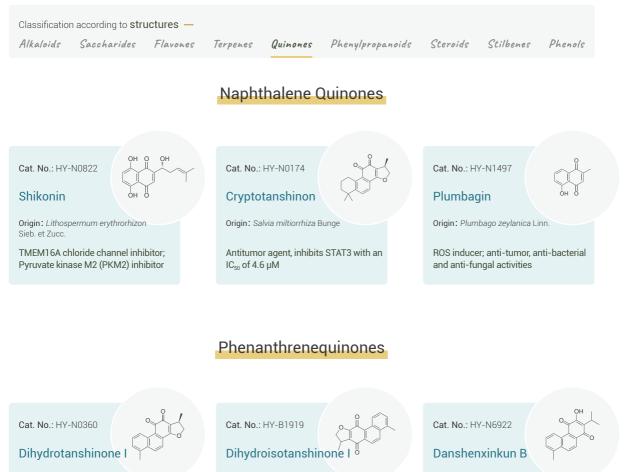


Master of Bioactive Molecules

MCE



Quinones


Quinones are the compounds with unsaturated cyclodiketone structures. Because quinones have unsaturated ketone structure, when these are linked with chromophores (e.g., hydroxyl, methoxyl), they produce color, hence exists as pigments in nature.

Quinones have a wide range of pharmacological activities, such as Rhein from *Rheum officinale* has anti-inflammatory, antioxidant, and anti-cancer effects, Cryptotanshinone from *Salvia miltiorrhiza* has anti-tumor effects, and Chrysophanein from *Aloe vera* has cytotoxic activity.

Quinones can be divided into benzoquinones, naphthoquinones, anthraquinones and phenanthrene quinones according to their structures.

Origin: Salvia miltiorrhiza Bunge

Inhibits MERS-COV, widely used in cardiovascular disease research

Origin: Salvia miltiorrhiza Bunge

Induces iron death and apoptosis of tumor cells; inhibits tumor metastasis

Origin: Salvia miltiorrhiza Bunge

An antioxidative component of tanshen

Anthraquinones

Emodin

Origin: Rheum palmatum Linn.

SARS-COV and CK2 inhibitor; selective 11 β -HSD1 inhibitor

Cat. No.: HY-N0123

Aloin

Origin: Aloe vera (Linn.) N. L. Burman var. chinensis (Haw.) Berg.

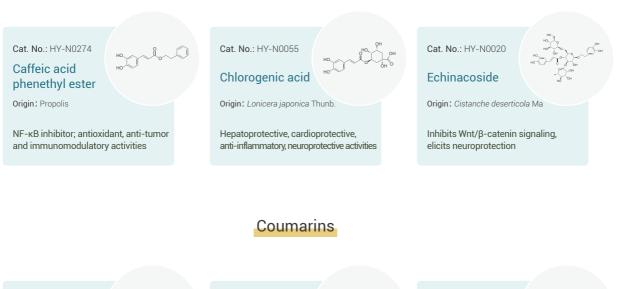
Iron chelating activity; anti-tumor and anti-inflammatory activities

Cat. No.: HY-N0365

Sennoside A

Origin: Folium Sennae Cassia angustifolia Vahl Cassia acutifolia Del.

HIV-1 inhibitor; anti-tumor, anti-bacterial and anti-fungal activities


Phenylpropanoids

Phenylpropanoids refer to compounds with one or more C6-C3 units in the parent nucleus, which can further be divided into simple phenylpropanoids, coumarins and lignans.

Simple phenylpropanoids belong to phenylpropanoid derivatives in structure. According to the structure of their C3 side chain, they can be divided into allylbenzene, phenylpropanol, benzenepropanal, phenylpropanic acid and other types.Coumarins have the parent nuclear structure of benzo α-pyranone and can be divided into simple coumarins, furancoumarins, pyrancoumarins and so on.

Lignans are a class of natural products from the oxidative polymerization of phenylpropanoids, usually dimers, and a few trimers and tetramers. They can be divided into simple lignans, single epoxy lignans, double epoxy lignans, biphenyl lignans, biphenyl cyclooctene lignans and other types according to the different connection modes of dimers.

Simple Phenylpropanols

Cat. No.: HY-N0551

Wedelolactone

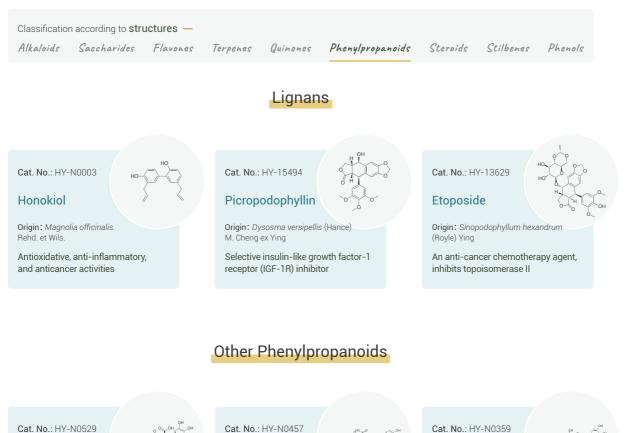
Origin: Aerial part of *Eclipta* prostrasta L.

Suppresses LPS-induced caspase-11 expression by inhibiting the IKK Complex

Dicoumarol

Origin: Melilotus officinalis (L.) Pall.

Quinone oxidoreductase 1 (NQO1) and PDK1 inhibitor


Cat. No.: HY-N0054

Osthole

Origin: Fruits of Cnidium monnieri (L.) Cuss.

Inhibitor of histamine H1 receptor activity; suppresses the secretion of HBV

Rosmarinic acid

Origin: Rosmarinus officinalis Linn.

MAO-A, MAO-B and COMT inhibitor; antiangiogenesis

Cichoric Acid

Origin: Echinacea purpurea (Linn.) Moench

Anti-tumor, anti-oxidation, lipid metabolism regulation activities

Cynarin

Origin: Inula japonica Thunb

Antioxidant, anti-radical, anti-cholinergic, anti-histamine and anti-virus activities

Steroids

Steroids are compounds with cyclopentane polyhydrophenanthrene nucleus. Steroids widely exist in plants and animals, such as Cardenolide compounds in *Digitalis purpurea*, Prosapogenin in *Dioscorea nipponica*, Bufalin in toad venom, and steroid hormones in the human body.

Steroids have a wide range of pharmacological activities, such as Cardenolide compounds have long been used to treat heart failure, steroid hormones can be used as anti-inflammatory agents, and OSW-1 can be used against cancer.

15

Common steroids include Cholesterol, sex hormone Estradiol and steroidal saponins.

Activates JNK signaling pathway; PDK1/Akt/mTOR signaling inhibitor

16

cholesterol molecules

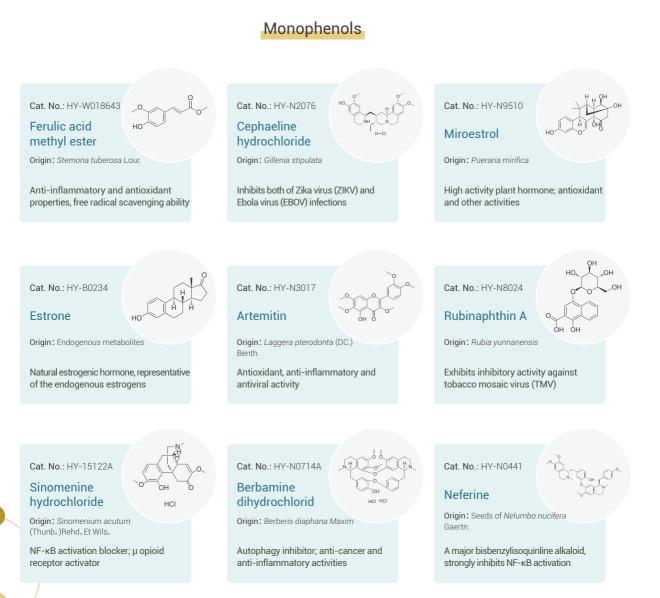
306, Agarwal City Mall, opposite M2K Pitampura, Delhi-110034 (India)

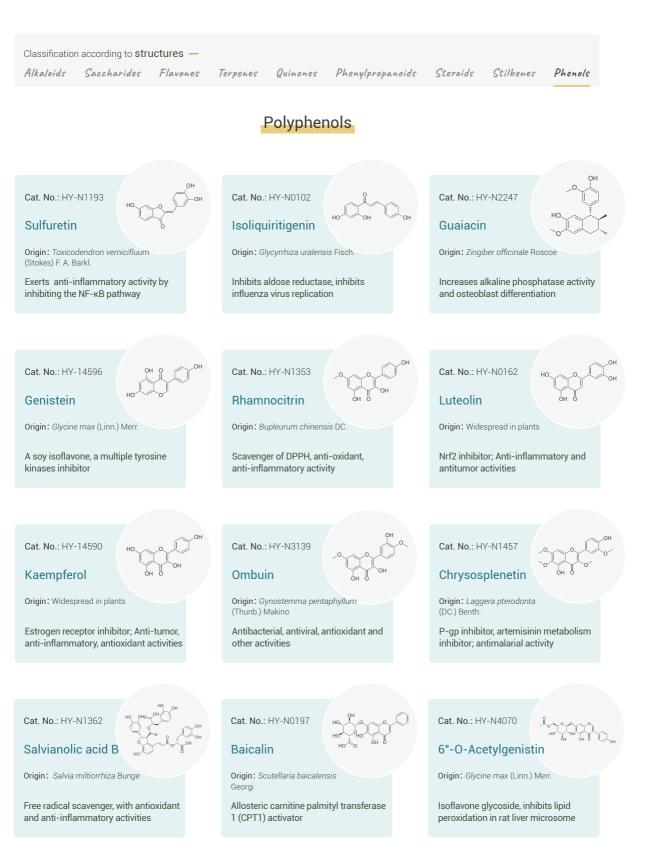
in the study of bile acid metabolism

Stilbenes

Stilbenes refer to compounds containing 1, 2-stilbenes groups in their structures. These compounds are widely found in nature, such as Resveratrol and Piceatannol widely found in plants and Polydatin from *Reynoutria japonica*.

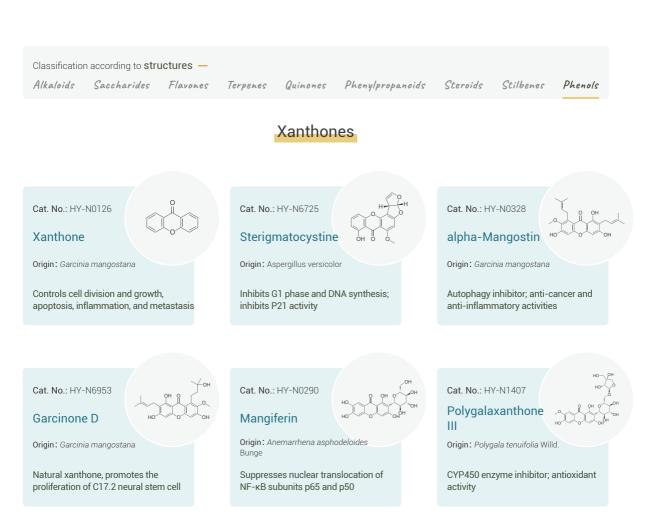
Stilbenes have a variety of pharmacological activities, such as the most studied Resveratrol, has antioxidant, anti-inflammatory, cardio-protective and anti-cancer effects; Polydatin has anti-inflammatory effect and can induce oxidative stress; Pterostilbene isolated from blueberry and *Pterocarpus marsupium* has antioxidant, anti-inflammatory, anti-cancer, anti-diabetic and anti-obesity activity.




Phenols

Phenols are compounds containing phenolic hydroxyl groups in their structure. They are widely found in plants and animals, such as Gallic acid from *Melaphis chinensis* and Ginkgolic acid from *Ginkgo biloba*, and flavonoids which are widely found in plants are also phenols. Phenols have antioxidant activity due to the phenolic hydroxyl group in their structures and can be used as free radical scavenging agents.

Phenolic compounds can be divided into monophenols and polyphenols according to the different number of phenolic hydroxyl groups, however polyphenols have more antioxidant capacity than monophenols.



MCE Master of Bioactive Molecules

Origin: Panax ginseng C. A. Meyer

Product Name	Structure Classification	Descriptions
Cat. No.: HY-N0039 Ginsenoside Rb1	Triterpenes	Effective Na⁺, K⁺-ATPase inhibitor (IC₅₀ = 6.3±1.0 µM).
Cat. No.: HY-N0835 (20S)-Protopanaxatriol	Triterpenes	Regulates the endothelium cell function by acting on glucocorticoid receptor (GR) and estrogen receptor (ER), lipid metabolism inhibitor.
Cat. No.: HY-N2515 Ginsenoside Rk1	Triterpenes	Plays an anti-inflammatory role by inhibiting of JAK2/Stat3 signaling pathway and activating of NF-кВ. Antitumor activity.
Cat. No.: HY-N0596 Panaxadiol	Triterpenes	Inhibits the expression of programmed cell death ligand-1; Neuroprotective and antitumor activity.
Cat. No.: HY-N0602 Ginsenoside Rg2	Triterpenes	Inhibits the expression of VCAM-1 and ICAM-1 mediated by lipopolysaccharide, and decreases the accumulation of A β_{1-42}
Cat. No.: HY-N0045 Ginsenoside Rg1	Triterpenes	Improves the impaired cognitive function of AD and reduces the accumulation of $A\beta$ in hippocampus.
Cat. No.: HY-N0904 Ginsenoside C-K	Triterpenes	Plays an anti-inflammatory role by inhibiting inducible nitric oxide synthase (iNOS) and COX-2.
Cat. No.: HY-N0042 Ginsenoside Rc	Triterpenes	Enhances ion channel current mediated by GABA receptor A (GABAA), inhibits TNF- α and IL-1 β expression and plays an anti-inflammatory role.
Cat. No.: HY-N0797 (20S)-Protopanaxadiol	Triterpenes	Inhibits Akt activity and induces apoptosis of tumor cells.
Cat. No.: HY-N1376 (20R)-Ginsenoside Rg3	Triterpenes	Inhibits vascular endothelial cell proliferation (IC ₅₀ = 10 nM); Antitumor activity.

Origin: Panax ginseng C. A. Meyer

Product Name	Structure Classification	Descriptions
Cat. No.: HY-N0041 Ginsenoside Rb3	Triterpenes	Inhibits NF- κB transcriptional activity induced by TNFa (IC_{50} = 8.2 μM). Antitumor activity.
Cat. No.: HY-N0908 Ginsenoside Rg5	Triterpenes	Inhibits COX-2 mRNA expression by blocking the binding of IGF-1 to its receptor (IC ₅₀ = 90 nM) and inhibits the DNA-binding activity of NF- κ B P65.
Cat. No.: HY-N0597 Panaxatriol	Triterpenes	Relieves bone marrow suppression due to radiation damage.
Cat. No.: HY-N1401 (20R)-Ginsenoside Rh2	Triterpenes	Matrix metalloproteinase (MMP) inhibitor; Cell anti-proliferative agent; induces apoptosis with anti-inflammatory and antioxidant activity.
Cat. No.: HY-N0607 Ginsenoside Ro	Triterpenes	Ca ²⁺ antagonistic antiplatelet effect; reduces TXA2 production, and inhibits COX-1 and TXAS activity weakly.
Cat. No.: HY-N0907 Ginsenoside Rg6	Triterpenes	Inhibits NF- κ B transcriptional activity induced by TNF- α in HepG2 cells; induces apoptosis.
Cat. No.: HY-N0600 Ginsenoside F3	Triterpenes	Exerts the immune enhancing activity by regulating the production and expression of type 1 (IL-2, IFN-γ) and type 2 cytokines (IL-4 and IL-10).
Cat. No.: HY-N4259 Ginsenoside Ra3	Triterpenes	Anti-cancer activity.
Cat. No.: HY-N4258 Panasenoside	Flavonols	Inhibits α-glucosidase.
Cat. No.: HY-N1455 Falcarinol	Others	Orally active Hsp90 inhibitor, targets the N-terminal and C-terminal of Hsp90; induces apoptosis.

Origin: Glycyrrhiza uralensis Fisch.

Product Name	Structure Classification	Descriptions
Cat. No.: HY-N0184 Glycyrrhizic acid	Triterpenes	HMGB1 antagonist, with the potential for tumor, diabetes and other research.
Cat. No.: HY-N4185 Licoflavone A	Chalcones	Eotaxin/CCL11 inhibitor; Acts on NF-кB, STAT6, HDAC2 and other targets
Cat. No.: HY-N0102 Isoliquiritigenin	Chalcones	Inhibits aldose reductase activity (IC50 = 320 nM); Effective inhibitor of influenza virus replication.
Cat. No.: HY-N0372 Licochalcone A	Chalcones	Extensive inhibitory activity against UDP-glucuronosyltransferases (UGTs). Antitumor activity.
Cat. No.: HY-N4187 Licochalcone D	Chalcones	Active inhibitor of NF-κB P65; Antioxidant, anti-inflammatory and anti-tumor activities.
Cat. No.: HY-N0373 Licochalcone B	Chalcones	Inhibits amyloid β (AB42) self-aggregation and decomposing of AB42 fibrils against AD.
Cat. No.: HY-N2497 Isoliquiritin apioside	Chalcones	Inhibits PMA-induced MMP9, MAPK and NF-ĸB activities. Antitumor and antiangiogenic activities.
Cat. No.: HY-N4182 Licochalcone E	Chalcones	Inhibits transcriptional activity of NF-кВ and AP-1 by inhibiting the activation of AKT and MAPK.
Cat. No.: HY-N0393 Glabridin	Isoflavanes	Activates PPAR gamma. Antioxidant, anti-diabetic, anti-tumor, anti-inflammatory, cardiovascular/neuroprotective activities.
Cat. No.: HY-N4113 Glycycoumarin	Coumarins	Exerts anti-liver cancer activity through JNK, T-LAK, endoplasmic reticulum stress and other pathways; Induces of autophagy; Antioxidation.

Origin: root-bark of *Astragalus membranaceus* (Fisch.) Bunge

Product Name	Structure Classification	Descriptions
Cat. No.: HY-N0431 Astragaloside IV	Triterpenes	Inhibits ERK1/2 and JNK activation; Anti-tumor, anti-inflammatory, cardiovascular protective activities.
Cat. No.: HY-N1485 Cycloastragenol	Triterpenes	Telomerase activator; Promotes T cell proliferation; Used in aging research.
Cat. No.: HY-N0432 Astragaloside I	Triterpenes	Stimulates osteoblast differentiation through the Wnt/β-catenin signaling pathway, with osteogenic activity.
Cat. No.: HY-N6577 Astragaloside VI	Triterpenes	Accelerates wound healing by activating of epidermal growth factor receptor/extracellular signal-regulated kinase EGFR/ERK signaling pathway.
Cat. No.: HY-N0434 Astragaloside III	Triterpenes	Enhances anti-tumor response of NK cells; Antiviral and anti-inflammatory activities.
Cat. No.: HY-N0433 Astragaloside II	Triterpenes	Reverses p-glycoprotein-mediated multidrug resistance; induces T cell activation; antiviral activity.
Cat. No.: HY-N0888 Isoastragaloside II	Triterpenes	Anti-inflammatory activity; Inhibits the formation of late glycation end products.
Cat. No.: HY-N0887 Isoastragaloside I	Triterpenes	Increases adiponectin content. Inhibits NF-κB activation; Anti-inflammatory activity.
Cat. No.: HY-N0183 Formononetin	Isoflavones	Active FGFR2 inhibitor; Antiangiogenesis and antitumor activity.
Cat. No.: HY-N0519 Calycosin	Isoflavones	Calcium channel mechanism agent; Neuroprotective, anti-oxidation, anti-inflammatory, anti-tumor and apoptosis-inducing activities.

Origin: seeds of Vitis vinifera Linn.

Product Name	Structure Classification	Descriptions
Cat. No.: HY-N7072 Grape seed extract	Biflavones	Anti-inflammatory, anti-proliferation; inhibits lipid metabolism enzymes, pancreatic lipase and lipoprotein lipase; induces cell apoptosis.
Cat. No.: HY-N2345 Procyanidin B3	Biflavones	Histone acetyltransferase (HAT)-specific inhibitor that binds to inactive sites, selectively inhibits P300-mediated androgen receptor acetylation.
Cat. No.: HY-N0796 Procyanidin B2	Biflavones	Inhibits NLRP3 activation; induces activation of PPARy. Anti-inflammatory and anti-tumor activities.
Cat. No.: HY-N0795 Procyanidin B1	Biflavones	Specific Kv10. 1 channel inhibitor; Anti-inflammatory and anti-free radical activities.
Cat. No.: HY-N2344 Procyanidin A1	Biflavones	Exerts anti-inflammatory effect through NF-кВ, MAPK and Nrf2/HO-1 pathways.
Cat. No.: HY-N2343 Procyanidin A2	Biflavones	Antitumor, antioxidative, antibacterial and anti-inflammatory activities.
Cat. No.: HY-107208 Procyanidol B4	Biflavones	Anti-inflammatory and antiviral activities.
Cat. No.: HY-N0729 Linoleic acid	Ketones, Aldehydes, Acids	A part of a membrane phospholipid; Damages red blood cells and hemoglobin through oxidation.
Cat. No.: HY-N0523 Gallic acid	Phenols	Inhibits COX-2 free radical scavenging. Antibacterial, anti-inflammatory, anti-tumor and other activities.
Cat. No.: HY-N0172 Caffeic acid	Phenols	A TRPV1 ion channels and 5-lipoxygenase (5-LO) Inhibitor.

Origin: Ginkgo biloba Linn.

Product Name	Structure Classification	Descriptions
Cat. No.: HY-N4176 Ginkgolide K	Diterpenoids	Induces protective autophagy through AMPK/mTOR/ULK1 signaling pathway; Neuroprotective activity.
Cat. No.: HY-N0786 Ginkgolide J	Diterpenoids	Protects beta-amyloid from synaptic dysfunction and cell death.
Cat. No.: HY-N3075 Phytol	Diterpenoids	Anti-schistosomiasis, anti-injury, anti-oxidation, anti-inflammation, anti-allergy activities.
Cat. No.: HY-N0785 Ginkgolide C	Diterpenoids	A variety of biological functions, reduces platelet aggregation and improves Alzheimer's disease and so on.
Cat. No.: HY-B0355 Ginkgolide A	Diterpenoids	A GABA inhibitor.
Cat. No.: HY-N0419 Quercimeritrin	Flavonols	Obvious amylase activity and anti-inflammatory activity.
Cat. No.: HY-N2117 Isoginkgetin	Biflavones	An inhibitor of MMP9 and pre-mRNA Splicing.
Cat. No.: HY-N0889 Ginkgetin	Biflavones	Antitumor, anti-inflammatory, neuroprotective, antifungal effects; Effective Wnt signaling inhibitor.
Cat. No.: HY-N0077 Ginkgolic Acid	Ketones, Aldehydes, Acids	Inhibits SUMOylation and HIV protease activity; Antitumor activity.
Cat. No.: HY-N2020 Anacardic Acid	Ketones, Aldehydes, Acids	Histone acetyltransferase inhibitor; Antioxidative and antitumor activities.

Origin: Epimedium brevicornu Maxim.

Product Name	Structure Classification	Descriptions
Cat. No.: HY-N0014 Icariin	Flavonols	A PDE5 inhibitor (IC ₅₀ = 432 nM); PPARa activator.
Cat. No.: HY-N0678 Icaritin	Flavonols	Regulates MAPK/ERK/JNK and JAK2/STAT3/AKT signal transduction; Antitumor activity.
Cat. No.: HY-N0011 Baohuoside I	Flavonols	CXCR4 inhibitor; Induces apoptosis induction and antitumor activity.
Cat. No.: HY-N0257 Epimedin A	Flavonols	$ER\alpha$ and $ER\beta$ mediated estrogen activity; Used in osteoporosis research.
Cat. No.: HY-N1940 <mark>β-Anhydroicaritin</mark>	Flavonols	Antiosteoporosis, estrogen regulation and antitumor activity.
Cat. No.: HY-N0861 Ikarisoside F	Flavonols	Binds and inhibits AdoHcy hydrolase activity.
Cat. No.: HY-N2626 Epimedoside A	Flavonols	Antioxidative, anti-tumor, anti-osteoporosis activities.
Cat. No.: HY-N4111 Wushanicaritin	Flavonols	Significant antioxidant activity; Antitumor and anti-inflammatory activities.
Cat. No.: HY-N1413 Noricaritin	Flavonols	Anti-coronavirus activity; promotes bone growth.
Cat. No.: HY-N8086 Korepimedoside C	Flavonols	Antioxidant activity and inhibits acetylcholinesterase.

Origin: Rhodiola rosea Linn.

Product Name	Structure Classification	Descriptions
Cat. No.: HY-N2186 Leucoside	Flavonols	Affects the motor ability and emotion of BALB-C mice, and causes smooth muscle bleeding.
Cat. No.: HY-N0240 Herbacetin	Flavonols	Allosteric inhibitor of Ornithine decarboxylase (ODC) with antioxidant, anti-inflammatory and antitumor activities.
Cat. No .: HY-N0241 Rhodionin	Flavonols	Specific non-competitive cytochrome P450 2D6 inhibitor; Antioxidant activity.
Cat. No.: HY-N3431 Kaempferol-7-O- rhamnoside	Flavonols	Effective α-glucosidase activity inhibitor; inhibits PD-1/PD-L1 interaction; Antioxidant, vascular relaxation and antiviral activities.
Cat. No.: HY-119917 Gossypetin	Flavonols	Potent MKK3 and MKK6 inhibitor, strongly attenuates the MKK3/6-P38 signaling pathway.
Cat. No.: HY-N2425 Rhodiosin	Flavonols	A specific non-competitive cytochrome P450 2D6 inhibitor; effectively inhibits acetylcholinesterase (AChE). Effective DPPH free radical scavenging activity.
Cat. No.: HY-N0506 Rosarin	Simple phenylpropanoids	Inhibits the expression of iNOS, IL-1 β and TNF- α ; Anti-inflammatory and neuroprotective effects.
Cat. No.: HY-N0508 Rosin	Simple phenylpropanoids	Causes allergic contact dermatitis; A natural film-forming polymer used for drug delivery.
Cat. No.: HY-N0109 Salidroside	Phenols	Prolyl endopeptidase inhibitor; Antifatigue, antitumor and neuroprotective activities.
Cat. No.: HY-N5079 Lotaustralin	Saccharides	A cyanoside compound; Histamine releasing inhibitor.

Origin: *Panax pseudo-ginseng* Wall. var. notoginseng (Burkill)Hoo & Tseng

Product Name	Structure Classification	Descriptions
Cat. No.: HY-N0046 Notoginsenoside Fe	Triterpenes	Inhibits diet-induced obesity; activates paraventricular hypothalamic neurons.
Cat. No.: HY-N0615 Notoginsenoside R1	Triterpenes	Alleviates cardiac dysfunction in mice with endotoxemia; alleviates atherosclerotic lesions in ApoE deficient mice; alleviates renal ischemia-reperfusion injury in rats.
Cat. No.: HY-N2531 Notoginsenoside Fc	Triterpenes	Alleviates vascular endothelial cell injury induced by high glucose by upregulating PPAR-γ in diabetic rats.
Cat. No.: HY-N0910 Notoginsenoside Ft1	Triterpenes	Promotes angiogenesis through VEGF secretion mediated by HIF-1α and regulation of PI3K/AKT and Raf/MEK/ERK signaling pathways.
Cat. No.: HY-N6924 Zingibroside R1	Triterpenes	Antianoxic and Antitumor activities.
Cat. No.: HY-N0909 Notoginsenoside R2	Triterpenes	Shows neuroprotective effects against 6-OHDA-induced oxidative stress and apoptosis
Cat. No.: HY-N2530 Notoginsenoside Fa	Triterpenes	Activates and restores the potential of degenerative brain function.
Cat. No.: HY-N6924 Zingibroside R1	Triterpenes	Shows excellent anti-tumor effects, anti-angiogenic activity and anti-HIV-1 activity; has inhibitory effects on the 2-deoxy-D-glucose (2-DG) uptake by EAT cells.
Cat. No.: HY-N4305 Notoginsenoside FP2	Triterpenes	Used for cardiovascular disease research.
Cat. No.: HY-N1477 Dencichine	Others	Inhibits the activity of HIF-prolyl hydroxylase-2 (PHD-2).

Origin: Bupleurum chinensis DC.

Product Name C	Structure Classification	Descriptions
Cat. No.: HY-N0250 Saikosaponin D	Triterpenes	Inhibits the activity of selectin, STAT3 and NF-KB. Anti-tumor, anti-inflammatory, immunomodulatory activities.
Cat. No.: HY-N0246 Saikosaponin A	Triterpenes	Upregulates of LXRa expression and exerts anti-inflammatory activity through NF-kB pathway; Antitumor and induces apoptosis.
Cat. No.: HY-N2922 <mark>β-Amyrin</mark>	Triterpenes	Blocks Aβ-induced enhancement damage, used in the study of AD. Antibacterial and pain relieving activities.
Cat. No.: HY-126114 Lupeol acetate	Triterpenes	Inhibits the progression of rheumatoid arthritis by down-regulating TNF-a, IL-1 β , McP-1, COX-2, VEGF and Granzyme B.
Cat. No.: HY-N0248 Saikosaponin B2	Triterpenes	Invasion inhibitor of HCV virus infection; Antitumor and alleviates renal fibrosis activities.
Cat. No.: HY-N0249 Saikosaponin C	Triterpenes	In Alzheimer's disease, the main target is amyloid beta and tau proteins; Anti-HBV activity.
Cat. No.: HY-N4237 Saikogenin D	Triterpenes	Activates cyclooxygenase, converts arachidonic acid to epoxyeicanoic acid and dihydroxy eicosenotrienoic acid, whose metabolites in turn inhibit prostaglandin E2 (PGE2) production.
Cat. No.: HY-125130 Hesperetin 7-0-glucoside	Flavonones	Effective human HMG-COA reductase inhibitor; effectively inhibits the growth of Helicobacter pylori; Potent anti-inflammatory activity.
Cat. No.: HY-N1860 <mark>3-O-Methylquercetin</mark>	Flavonols	Inhibits total cAMP and cGMP-phosphodiesterase. Anti-tumor and anti-inflammatory activities.
Cat. No.: HY-N1255 Scoulerine	Isoquinoline Alkaloids	Antimitotic compound and BACE1 (amyloid precursor protein lyase 1) inhibitor. Inhibits cell proliferation, blocks cell cycle and induces apoptosis of cancer cells.

Origin: Salvia miltiorrhiza Bunge

Product Name	Structure Classification	Descriptions
Cat. No.: HY-N0135 Tanshinone IIA	Naphthalene Quinones	Targets the VEGF/VEGFR2 protein kinase domain to inhibit angiogenesis; Cardiovascular protection and anticancer activity.
Cat. No.: HY-119720 Neocryptotanshinon	Naphthalene Quinones	Inhibits LPS induced inflammation by inhibiting NF-ĸB and iNOS signaling. Cardiovascular protection.
Cat. No.: HY-N0174 Cryptotanshinone	Naphthalene Quinones	Inhibits STAT3 (IC ₅₀ = 4.6 μ M); Antitumor and anti-inflammatory activities; induces ER stress-induced apoptosis.
Cat. No.: HY-N0134 Tanshinone I	Phenanthrenequinones	Inhibits SPLA2 and cPLA2. Antitumor activity; Radiation sensitizer.
Cat. No.: HY-N0360 Dihydrotanshinone I	Phenanthrenequinones	For cardiovascular disease research; inhibits MERS-CoV; Plays an anti-inflammatory role by inhibiting of TLR4 dimer.
Cat. No.: HY-N1913 Danshensu	Simple phenylpropanoids	Activates Nrf2 signaling pathway and protects cardiovascular system.
Cat. No.: HY-13704 NK012	Quinoline Alkaloids	Active metabolite of topoisomerase I inhibitor Irinotecan; Inhibits DNA synthesis and RNA synthesis.
Cat. No.: HY-N0318 Salvianolic acid A	Stilbenes	Protects the blood-brain barrier by inhibiting MMP-9 and anti-inflammatory effects; Cardiovascular protection.
Cat. No.: HY-125847 Salvianolic acid F	Stilbenes	The most effective and abundant compound in Salvia miltiorrhiza with good antioxidant activity.
Cat. No.: HY-N1362 Salvianolic acid B	Other phenylpropanoids	Commonly used to study microcirculatory diseases; Cardiovascular protection and anti-inflammatory activity.

Origin: Schisandra chinensis (Turcz.) Baill.

Product Name	Structure Classification	Descriptions	
Cat. No.: HY-N0691 Schisandrin	Lignans	Antioxidant, hepatoprotective, anti-tumor and anti-inflammatory activities; Reverses memory impairment in rats.	
Cat. No.: HY-N0089 Schisandrin B	Lignans	P-glycoprotein inhibitor; Anti-inflammatory, anti-oxidation and anti-tumor activities.	
Cat. No.: HY-N0693 Schisandrin A	Lignans	CYP3A inhibitor; Inhibits DNA damage and apoptosis induced by oxidative stress; Anti-inflammatory activity.	
Cat. No.: HY-N6866 Gomisin N	Lignans	Induces apoptosis of cancer cells, with sedative and hypnotic effect; Anti-inflammatory and reduces fat activities.	
Cat. No.: HY-N0064 Macelignan	Lignans	A variety of pharmacological activities, including anti-inflammatory, anti-tumor, anti-diabetic and neuroprotective activities.	
Cat. No.: HY-N0694 Schisantherin A	Lignans	Inhibits P65-NF-κB translocation into the nucleus by ΙκΒα degradation. Neuroprotective and anti-inflammatory activities.	
Cat. No.: HY-N0859 Schisanhenol	Lignans	UGT2B7 inhibitor; Antioxidant and antitumor activities.	
Cat. No.: HY-N0385 Gomisin J	Lignans	Regulates adipogenesis activating AMPK, LKB1 and Ca²+/ Calmodulin-dependent protein kinase II and fetuin-A; Anti-HIV, anti-tumor, anti-lipid peroxidation activities.	
Cat. No.: HY-N3963 Gomisin M2	Lignans	Anti-HIV activity (EC ₅₀ = 2.4 μ M), anti-tumor and anti-allergic activities, used for the study of Alzheimer's disease.	
Cat. No.: HY-N2270 Chicanine	Lignans	Inhibits LPS-induced phosphorylation of P38 MAPK, ERK 1/2 and ΙκΒ-α; Anti-inflammatory activity.	

Origin: *Siraitia grosvenorii* (Swingle) C. Jeffrey ex Lu et Z. Y. Zhang

Product Name	Structure Classification	Descriptions	
Cat. No.: HY-N0501 <mark>11-oxo-mogroside V</mark>	Triterpenes	Significant inhibitory effect on reactive oxygen species.	
Cat. No.: HY-N2312 Mogrol	Triterpenes	Inhibits ERK and STAT3 signaling pathway and activation of AMPK; Anti-inflammatory and anti-tumor activities.	
Cat. No.: HY-N6928 Mogroside III-E	Triterpenes	Inhibits the release of NO and has anti-pulmonary fibrosis effect; Antipancreatitis activity.	
Cat. No.: HY-N0502 Mogroside V	Triterpenes	Non-saccharide sweetener with antioxidant, anti-diabetic and anti-tumor activities.	
Cat. No.: HY-N6942 Mogroside IV-A	Triterpenes	Obvious inhibition of EBV-EA induction; Antioxidant, anti-diabetic and anti-tumor activities.	
Cat. No.: HY-N6945 Mogroside IV	Triterpenes	A triterpenoid glycoside and nonsugar sweetener; exhibits antioxidant, antidiabetic and anticancer activities.	
Cat. No.: HY-N6854 Mogroside I A1	Triterpenes	Antioxidant, anti-diabetic and anti-tumor activities.	
Cat. No.: HY-N0612 Siamenoside I	Triterpenes	Inhibits maltozyme; Antidiabetic activity.	
Cat. No.: HY-108271 Mogroside III-A1	Triterpenes	Non-saccharide sweetener; antioxidant, anti-diabetic and anti-tumor activity.	
Cat. No.: HY-N3031 Grosvenorine	Flavonols	Good antibacterial, antioxidant and immune function regulation activity.	

Origin: Animals

As one of the three main sources of natural products (plant, animal, microorganism), animal is one of the important sources of natural products. Common animal sources of natural products include toad venom, musk, and cantharidin, etc., which are commonly used as Chinese traditional medicines.

Product Name	Structure Classification	Descriptions	
Cat. No.: HY-N0877 Bufalin	Steroids	Effective Na+/K+-ATPase inhibitor; inhibits angiogenesis and antitumor activity.	
Cat. No.: HY-N0815 Resibufogenin	Steroids	Inhibits oxidative stress, antitumor and induces G1 cell cycle arrest.	
Cat. No.: HY-N0880 Cinobufotalin	Steroids	Cardiotonic, with diuretic and hemostatic activity; Potential anti-lung cancer drug.	
Cat. No.: HY-N0421 Cinobufagin	Steroids	Induces apoptosis and G2/M cell cycle arrest; Anti-tumor activity; Reverses p-glycoprotein-mediated drug resistance.	
Cat. No. : HY-N0876 Arenobufagin	Steroids	Induces apoptosis, autophagy and regulates lipid homeostasis; Antitumor activity.	
Cat. No.: HY-N0878 Bufotalin	Steroids	Antitumor activity; Induces apoptosis of cancer cells, cell cycle arrest and endoplasmic reticulum stress activation.	
Cat. No .: HY-N6576 Hellebrigenin	Steroids	Induces DNA damage and G2/M cell cycle arrest; Triggers mitochondria mediated apoptosis.	
Cat. No.: HY-N0885 Telocinobufagin	Steroids	Promotes Th1 cell immune response; Anti-inflammatory, anti-bacterial, anti-tumor and apoptosis-inducing activities.	
Cat. No.: HY-B1960 Canthaxanthin	Other Terpenoids	Red-orange carotenoid with a variety of biological activities, such as antioxidant, anti-tumor activity.	
Cat. No.: HY-N0633 Muscone	Ketones, Aldehydes, Acids	Inhibits NF-κB and NLRP3 inflammasome activation; Significantly reduces the levels of inflammatory cytokines (IL-1β, TNF-α and IL-6); Cardioprotective and neuroprotective activities.	

Origin: Animals

Product Name	Structure Classification	Descriptions	
Cat. No.: HY-N6905 Acetylarenobufagin	Ketones, Aldehydes, Acids	Hypoxia-inducible factor-1 (HIF-I) regulator; Vegfr-2 signaling pathway inhibitor; Antitumor activity.	
Cat. No.: HY-N6574 Marinobufogenin	Ketones, Aldehydes, Acids	Na ⁺ /K ⁺ -ATPase inhibitor.	
Cat. No. : HY-N0879 Pseudobufarenogin	Ketones, Aldehydes, Acids	Induces cell cycle arrest and apoptosis; Antitumor activity.	
Cat. No.: HY-N0883 Gamabufotalin	Ketones, Aldehydes, Acids	Targets ΙΚΚβ/NF-κB, VEGFR-2 signaling pathway; Anti-tumor and anti-inflammatory activities.	
Cat. No.: HY-N0881 Desacetylcinobufagin	Ketones, Aldehydes, Acids	A natural compound used for microbial transformation; Antitumor activity.	
Cat. No.: HY-125934 Allocholic acid	Ketones, Aldehydes, Acids	A typically fetal bile acid found in vertebrates and reappears during liver regeneration and carcinogenesis; a potent and specific stimulant of the adult olfactory system.	
Cat. No.: HY-101848 Latrunculin B	Other alkaloids	Actin polymerase inhibitor. Antifungal and antigenic animal activities.	
Cat. No.: HY-105231 Bryostatin 1	Ketones, Aldehydes, Acids	Effective PKC regulator of central nervous system (CNS) permeability; Anti-cancer, anti-inflammatory, neuroprotective, anti-HIV-1 infection properties.	
Cat. No.: HY-16929 Latrunculin A	Other alkaloids	Binds to actin monomer and inhibits actin aggregation.	
Cat. No.: HY-N4225 Aaptamine	Quinoline alkaloids	Competitive antagonist of α -adrenergic receptors; Activates P21 promoter independently of the p53 pathway.	

Origin: Natural antibiotics

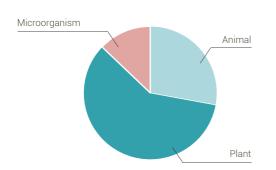
Antibiotics are secondary metabolites produced by microorganisms or higher animals and plants during their metabolic pathways which have anti-infective potential, and can interfere with the development of other living cells. The main structural classes include β-lactam, macrocyclic lipids, polyethers and so on.

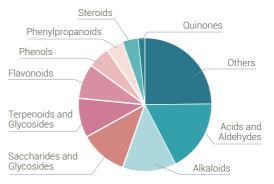
Product Name	Structure Classification	Descriptions
Cat. No.: HY-10219 Rapamycin	Macrolide antibiotics	Effective and specific mTOR inhibitor; Autophagy activator; Immunosuppressant.
Cat. No.: HY-100558 Bafilomycin A1	Macrolide antibiotics	Specific reversible V-ATPase inhibitor; Late stage of autophagy inhibitor.
Cat. No.: HY-16592 Brefeldin A	Macrolide antibiotics	Protein transport inhibitor; Autophagy and mitophagy inhibitor; CRISPR/Cas9 agonist; Inhibits HSV-1 virus; Antitumor activity.
Cat. No.: HY-13756 Tacrolimus	Macrolide antibiotics	Inhibits T lymphocyte signal transduction and IL-2 transcription by binding to fK506-binding protein (FKBP) to form a complex and inhibiting calcineurin.
Cat. No.: HY-16589 Oligomycin A	Macrolide antibiotics	A mitochondrial F ₀ F ₁ -ATPase inhibitor obtained from Streptomyces; Antifungal activity.
Cat. No.: HY-15310 Ivermectin	Macrolide antibiotics	A specific Impa/ β 1-mediated nuclear import inhibitor with strong antiviral activity against both HIV-1 and dengue virus; Antiparasitic activity.
Cat. No.: HY-100381 Nigericin sodium salt	Polyether antibiotics	NLRP3 agonist; H ⁺ , K ⁺ and Pb ²⁺ ion carrier.
Cat. No.: HY-B1743A Puromycin dihydrochlorid	Other de antibiotics	Amino-nucleoside antibiotic; Induces cell apoptosis; Reversible inhibition of dipeptidyl Peptidase II and cytoplasmic alanine aminopeptidase.
Cat. No.: HY-17561 G-418 disulfate	Other antibiotics	Inhibits protein synthesis in eukaryotes and prokaryotes; Commonly used as a selective antibiotic in eukaryotic cells.
Cat. No.: HY-B1907 Rifamycin sodium	Other antibiotics	Displays a broad spectrum of antibiotic activity against Gram-positive and, to a less extent, Gram-negative bacteria.

Origin: Natural antibiotics

Product Name	Structure Classification	Descriptions	
Cat. No.: HY-B0490 Hygromycin B	Other antibiotics	Aminoglycoside, inhibits prokaryotic and eukaryotic cells.	
Cat. No.: HY-A0098 Tunicamycin	Other antibiotics	Inhibits N-glycosylation and blocks GlcNAc phosphotransferase; Induces endoplasmic reticulum stress; Antibacterial, anti-tumor.	
Cat. No. : HY-13434 Ionomycin	Other antibiotics	Effective selective calcium ion carrier; Promotes apoptosis and Induces protein kinase C (PKC) activation.	
Cat. No.: HY-13753 Streptozocin	Other antibiotics	DNA methylation; Anti-tumor and anti-diabetes activities.	
Cat. No.: HY-18982 Anisomycin	Other antibiotics	Potent inhibitor of protein synthesis interfering with protein and DNA synthesis by inhibiting the peptidyl transferase 80 ribosomal system.	
Cat. No.: HY-B0470 Neomycin sulfate	Other antibiotics	irreversible binding of 30S ribosome subunits, and blocks bacterial	
Cat. No .: HY-B0318 Metronidazole	Other antibiotics	Nitroimidazole antibiotic; Anti-anaerobic bacteria, anti-SAR-COV-2 activity.	
Cat. No.: HY-N6705 TDA	Other antibiotics	Exhibits strong antibiotic activity against a variety of bacteria, including Proteus α and γ , flavobacteria and actinomycetes.	
Cat. No.: HY-A0279 Pristinamycin	Other antibiotics	Streptomycin-like antibiotics with oral activity, shows highly activity against a variety of antibiotic-resistant pathogens, especially gram-positive bacterium.	
Cat. No.: HY-N8492 Monascorubrin	Other antibiotics	Shows significant antibiotic activity against Bacillus subtilis and Candida.	

Cat. No.: HY-L021 & HY-L021P


Natural Product Library


(96-/384-well plate)

Cat. No.	Product Name	Compound Number	Supply Form
HY-L021	Natural Product Library	4,000+	Part A: Solution or powder
HY-L021P	Natural Product Library Plus	4,300+	Part A & Part B Part B: Powder only

Product Features

- All natural products have clear sources and structure classifications.
- Structurally diverse, including Saccharides and Glycosides, Phenylpropanoids, Quinones, Flavonoids, Terpenoids and Glycosides, Steroids, Alkaloid, Phenols, Acids and Aldehydes, etc.
- Bioactivity and safety have been confirmed by clinical trials and/or preclinical research. Some compounds have been approved by FDA.
- Bioactivity diversity, covering 200+ common targets, 20+ hot signaling pathways and a variety of research areas.
- HY-L021P, with a more powerful screening capability, further supplements HY-L021 by adding some compounds with low solution stability or low solubility and some novel, rare or exclusive compounds (Part B). Supplementary compounds are provided in powder form.

Source of products in MCE Natural Product Library

Different structure types in MCE Natural Product Library

Publications Citing Use of MCE Natural Product Library Compounds —

Signal Transduct Target Ther. 2022 Aug 15;7(1):288. Cell Biosci. 2021 Feb 28;11(1):45. Front Cell Infect Microbiol. 2021 Apr 7;11:665379. Acta Pharm Sin B. 2021 Dec;11(12):3879-3888. Free Radic Biol Med. 2021 Dec;177:313-325. Molecules. 2022 Nov 11;27(22):7774. Pharmacol Res. 2022 Aug;182:106279. Bioorg Chem. 2021 Feb 10;109:104723.

Cat. No.: HY-L056, HY-L071, HY-L068 & HY-L057

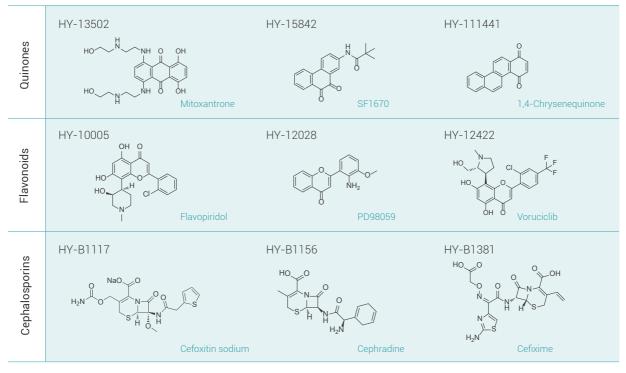
Terpenoids, Alkaloids, Flavonoids and Phenols Product Libraries (96-/384-well plate)

Product Features

- Structurally diverse, bioactive, and cell permeable.
- Bioactivity and safety have been confirmed by clinical and/or preclinical trials. Some compounds have been approved by FDA.
- More detailed compound information with structure, target, and brief introduction.
- High purity and quality validated by NMR and LC/MS.

Product Name	Induction	Product Features	Representative Structure
HY-L056 Terpenoids Library	Terpenoids display a wide array of important pharmacological properties in the fight against cancer, malaria, inflammation , and a variety of infectious diseases .	A unique collection of 500+ natural terpenoid compounds, such as monoterpenes, sesquiterpenes, diterpenes, ester terpenes and triterpenes , etc.	
HY-L071 Alkaloids Library	Alkaloids are a large and complex group of cyclic compounds that contain N. Important alkaloids include morphine, strychnine, atropine, colchicine, ephedrine, quinine, and nicotine. They show anti-inflammatory , anticancer , analgesics , local anesthetic and neuropharmacological activities, etc.	A unique collection of 500+ natural alkaloids, such as indoles , quinolines , isoquinolines , pyrrolidines , pyridines , pyrrolizidines , tropanes , and terpenoids and steroids .	
HY-L068 Flavonoids Library	Flavonoids have anti-oxidative, anti- mutagenic, anti-inflammatory, and anti-carcinogenic properties coupled with capacity to modulate key cellular enzyme function. They have been widely used in a variety of nutrition, medicine and cosmetics.	A unique collection of 500+ natural flavonoid compounds, such as flavones, flavonols, flavanones, flavanonols, flavanols, etc.	
HY-L057 Phenols Library	Phenolic compounds are a diverse group of naturally occurring compounds with multiple activities, such as antioxidant and antimicrobial properties.	A unique collection of 1,200+ natural phenol compounds with a variety of biological activities.	ОН

Cat. No.: HY-L021L Natural Product Like Compound Library (96-/384-well plate)


Natural products (NPs) and their molecular frameworks are the main sources of new drugs and play highly significant roles in the drug discovery and development process. Based on the source and structure analysis of 1,562 drugs approved by the FDA from 1981 to 2014, it was found that 21% of the drugs were natural product derivatives, and 61% of the drugs contained natural product pharmacophore groups. From this point, it concludes that natural product analogues and derivatives have the same screening value as natural products in the development of new drugs.

MCE provides a unique collection of **300+** natural product-like compounds that are structurally like Steroids, Tannins, Flavonoids, Isoquinolines, etc. This library is an important source of lead compounds for HTS and HCS.

Product Features

- All products are natural product analogues or derivatives and can be used in the development of new drugs.
- Structurally diverse, bioactive, and cell permeable.
- Detailed bioactivity information, including target, research areas and clinical information.
- High purity and quality validated by NMR and LC/MS.

Examples of Products in the Library

306, Agarwal City Mall, opposite M2K Pitampura, Delhi-110034 (India)

Cat. No.: HY-L065 **Traditional Chinese Medicine Monomer Library** (96-/384-well plate)

Traditional Chinese Medicine (TCM) has been used for centuries in China, where herbs are considered fundamental therapy for many acute and chronic conditions. Many studies indicated TCM exerted an overall regulatory effect via multi-component and multi-target network. Traditional Chinese medicine monomers are active compounds of Chinese Herbal Medicines. They possess medicinal properties such as **anti-cancer**, **anti-bacterial** effects may be an important source of new drugs. For example, **Artemisinin**, used in multidrug resistant malaria, was first isolated from the Chinese herb *Artemisia annua L*.

MCE designs a unique collection of **2,700+** compounds that all come from Chinese Herbal Medicines. MCE Traditional Chinese Medicine Monomer Library is a useful tool for discovering new drugs from TCM.

Product Features

- Structurally diverse, containing Saccharides & Glycosides, Terpenoids & Glycosides, Alkaloid, Phenols, Acids and Aldehydes, etc.
- Sources diverse, including ginseng, coptis, notoginseng, angelica and other 3,000+ Chinese herbal medicines.
- Clear source of traditional Chinese medicine and detailed bioactivity information is available.
- Bioactivity diverse, covering several hot research areas such as **immune inflammation**, **cancer**, **anti-infection**, **cardiovascular disease**, etc.

Cat. No.: HY-L055

Medicine Food Homology Compound Library

(96-/384-well plate)

Food as medicines have many benefits because of their safety. In order to ensure the safe use of functional food, National Health Commission of the People's Republic of China made specific provisions on Medicine Food Homology (MFH) items. More than 100 kinds of widely used MFH materials have been released.

Based on MFH items released by National Health Commission, PRC, MCE carefully designs a unique collection of **1,700+** Medicine Food Homology Compounds with high safety.

Product Features

• All compounds are from Medicine Food Homology materials, which have high medicinal value and safety, and can be used for HTS and HCS.

41

- Sources diverse, those compounds are from more than 100 kinds of Medicine Food Homology materials.
- Detailed bioactivity information, including target, research areas, clinical information.
- High purity and quality validated by NMR and LC/MS.

Cat. No.: HY-L030

Human Endogenous Metabolite Compound Library (96-/384-well plate)

The composition of endogenous metabolite compounds is affected by the upstream influence of the proteome and genome as well as environmental factors, lifestyle factors, medication, and underlying disease. Therefore, metabolites have been described as proximal reporters of disease because their abundances in biological specimens are often directly related to pathogenic mechanisms. In more recent years, metabolomics approach has been adopted or suggested to be used in various research areas including drug discovery, neurosciences, agriculture, food and nutrition, and environmental sciences.

Product Features

- 1,000+ human endogenous metabolites for HTS and HCS.
- All compounds are human endogenous metabolites with better bioavailability.
- A useful tool for metabolomics and metabolism-related drug discovery.
- Bioactivity and safety confirmed by clinical trials and/or preclinical research. Some compouds have been approved by FDA.
- High purity and quality validated by NMR and LC/MS.

Cat. No.: HY-L084 Microbial Metabolite Library

(96-/384-well plate)

Metabolites have become important sources of lead compounds in the development of new drugs due to their safety and diversity of biological activities. Microbial metabolites, in particular, play key roles in the development of antibiotic products and non-antibiotic active compounds due to their species diversity and structural novelty.

Product Features

- 600+ microbial metabolites that are important sources of lead compounds and can be used for HTS and HCS.
- A useful tool for metabonomics and metabolism-related drug discovery.
- Structurally diverse, bioactive, and cell permeable.
- High purity and quality validated by NMR and LC/MS.

Cat. No.: HY-L067

Antibiotics Library

(96-/384-well plate)

Product Features

- 600+ antibiotics that can be used for HTS and HCS.
- Structurally diverse, including penicillins, cephalosporins, tetracyclines, macrolides, etc.
- Act on various targets on bacteria, such as **cell wall, cell membranes, ribosomes, nucleic acids, bacterial cellular metabolism** and **bacterial cellular enzymes**.
- Can be used in the study of new indications and the development of new anti-bacteria and anti-tumor drugs.
- Bioactivity and safety have been confirmed by clinical trials and/or preclinical research. Some compounds have been approved by FDA.
- High purity and quality validated by NMR and LC/MS.

Examples of Antibiotics

43

306, Agarwal City Mall, opposite M2K Pitampura, Delhi-110034 (India)

Natural products — Optimal Solutions for Drug Lead Discovery

Inhibitors • Screening Libraries • Proteins

www.MedChemExpress.com

MedChemExpress USA

 Tel:
 609-228-6898
 E-mail:
 sales@MedChemExpress.com

 Fax:
 609-228-5909
 Tech Support:
 tech@MedChemExpress.com

 Address:
 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

For research use only We do not sell to patients

MedChemExpress China

 Tel:
 +86-021-58955995
 E-mail:
 sales@MedChemExpress.cn

 Fax:
 +86-021-53700325
 Tech Support:
 tech@MedChemExpress.cn

 Address:
 No.1999, Zhangheng Road, Shanghai, P.R., 201203, China.

Master of Bioactive Molecules

www.MedChemExpress.con