

Overview

Synonyms	B7H3; B7-H3; B7H34lg-B7-H3; B7-H3B7; CD276ss Human B7 homolog 3 (B7-H3), a member of the immunoglobulin superfamily, is also known CD276, which contains two Ig-like C2-type (immunoglobulin-like) domains and two Ig-like V-type (immunoglobulin-like) domains. B7-H3 may participate in the regulation of T- cell-mediated immune response. B7-H3 also plays a protective role in tumor cells by inhibiting natural-killer mediated cell lysis as well as a role of marker for detection of neuroblastoma cells. Furthermore, B7-H3 is involved in the development of acute and chronic transplant rejection and in the regulation of lymphocytic activity at mucosal surfaces. Human B7-H3 does not bind any known members of the CD28 family of immunoreceptor. However, B7-H3 has been shown to bind an unidentified counter- receptor on activated T cells to costimulate the proliferation of CD4+ or CD8+ T cells. B7- H3 has also been found to enhance the induction of primary cytotoxic T lymphocytes and stimulate IFN-gamma production. Recombinant Human B7-H3 produced in HEK293 cells is a polypeptide chain containing 227 amino acids with C-terminal 10×His. A fully biologically active molecule, rhB7-H3 has a molecular mass of 40-42 kDa analyzed by reducing SDS-PAGE and is obtained by chromatographic techniques.
Accession No	Q5ZPR3-2
Source	HEK293
Sequence	LEVQVPEDPVVALVGTDATLCCSFSPEPGFSLAQLNLIW QLTDTKQLVHSFAEGQDQGSAYANRTALFPDLLAQGNAS LRLQRVRVADEGSFTCFVSIRDFGSAAVSLQVAAPYSKP SMTLEPNKDLRPGDTVTITCSSYRGYPEAEVFWQDGQGV PLTGNVTTSQMANEQGLFDVHSVLRVVLGANGTYSCLVR NPVLQQDAHGSVTITGQPMTFPHHHHHHHHHH

Properties

Measured Molecula Weight	r 40-42 kDa, observed by reducing SDS-PAGE.
Purity	> 95% as analyzed by reducing SDS-PAGE.
Formulation	Lyophilized from a 0.2 µm filtered solution in PBS.
Reconstitution	Reconstituted in ddH ₂ O or PBS at 100 μ g/ml.
Endotoxin Level	< 0.2 EU/µg, determined by LAL method.
Storage	Lyophilized recombinant B7-H3, Human remains stable up to 6 months at lower than - 70°C from date of receipt. Upon reconstitution, Human B7-H3 should be stable up to 1 week at 4°C or up to 3 months at -20°C. For long term storage it is recommended that a carrier protein (example 0.1% BSA) be added. Avoid repeated freeze-thaw cycles.

India Contact:

Life Technologies (India) Pvt. Ltd. 306, Aggarwal City Mall, Opposite M2K Pitampura, Delhi – 110034 (INDIA). Mobile: +91-9810521400, Ph: +91-11-42208000 Email: <u>customerservice@lifetechindia.com</u> Web: <u>www.lifetechindia.com</u>