

Overview

Synonyms CD28 antigen (Tp44); CD28 antigen; CD28 molecule; CD28 Human CD28 is composed of four exons encoding a protein of 220 amino acids that is expressed on the cell surface as a glycosylated, disulfide-linked homodimer of 44 kDa. Members of the CD28 family share a number of common features. These receptors consist of paired V-set immunoglobulin superfamily (IgSF) domains attached to single transmembrane domains and cytoplasmic domains that contain critical signaling motifs. The CD28 and CTLA4 ligands, CD80 and CD86, consist of single V-set and C1-set IgSF domains. The interaction of these costimulatory receptors with ligands is mediated through the MYPPPY motif within the receptor V-set domains. CD28 is expressed constitutively on almost all human CD4 T cells and approximately 50% of CD8 T cells. CD28 costimulation has diverse effects on T cell function, including biochemical events at the immunological synapse, downstream phosphorylation and other post-translational modifications, transcriptional changes, and cytoskeletal remodeling. At the most basic level, CD28 signals increase a cell's glycolytic rate, allowing cells to generate the energy necessary for growth and proliferation. Recombinant Human CD28 Fcc Chimera produced in HEK293 cells is a polypeptide chain containing 363 amino acids with the C-termimal human IgG1 Fc fragment. A fully biologically active molecule, rhCD28 has a molecular mass of 66-70 kDa analyzed by reducing SDS-PAGE and is obtained by chromatographic techniques. Biological Activity Fc with a linear range of 0.01-0.5µg/mL when detected by Streptavidin-HRP second antibody. Asm ^{1*} -Pro ^{15*} (Accession #: P10747), expressed with a C-terminal human IgG1 Fc fragment. NKLLVKQSPMLVAYDAWNLSCKYSYNLF SEFFRASLHKGLDSAVEVCVYGMYSQQL OVYSKTOPHODGKLANESCKYSY		
expressed on the cell surface as a glycosylated, disulfide-linked homodimer of 44 kDa. Members of the CD28 family share a number of common features. These receptors consist of paired V-set immunoglobulin superfamily (IgSF) domains attached to single transmembrane domains and cytoplasmic domains that contain critical signaling motifs. The CD28 and CTLA4 ligands, CD80 and CD86, consist of single V-set and C1-set IgSF domains. The interaction of these costimulatory receptors with ligands is mediated through the MYPPPY motif within the receptor V-set domains. CD28 is expressed constitutively on almost all human CD4 T cells and approximately 50% of CD8 T cells. CD28 costimulation has diverse effects on T cell function, including biochemical events at the immunological synapse, downstream phosphorylation and other post-translational modifications, transcriptional changes, and cytoskeletal remodeling. At the most basic level, CD28 signals increase a cell's glycolytic rate, allowing cells to generate the energy necessary for growth and proliferation. Recombinant Human CD28 Fc Chimera produced in HEK293 cells is a polypeptide chain containing 363 amino acids with the C-termimal human IgG1 Fc fragment. A fully biologically active molecule, rhCD28 has a molecular mass of 66-70 kDa analyzed by reducing SDS-PAGE and is obtained by chromatographic techniques.Biological ActivityImmobilized human CD28 Fcat 2µg/mL (100µL/well) can bind human Biotin-B7-1(CD80) Fc with a linear range of 0.01-0.5µg/mL when detected by Streptavidin-HRP second antibody.SequenceAsn1*9-Pro1*5* (Accession #: P10747), expressed with a C-terminal human IgG1 Fc fragment. NKILVKQSPMLVAYDNAVNLSCKYSYNLF SREFRASLHKGLDSAVEVCVYGNYSQOL QVYSKTGFNCDRLADRSVTFYLONLYNN QVTSKTGFNCDRLADRSVTFYLONLYNN QVTSKTGFNCDRLADRSVTFYLONLYNN QVTSKTGFNCDRLADRSVTFYLONLYNN QVTSKTGFNCDRLADRSVTFYLONLYNN QVTSKTGFN	Synonyms	
Biological Activity Immobilized human CD28 Fcat 2µg/mL (100µL/well) can bind human Biotin-B7-1(CD80) Fc with a linear range of 0.01-0.5µg/mL when detected by Streptavidin-HRP second antibody. Asn ¹⁹ -Pro1 ⁵ 2 (Accession #: P10747), expressed with a C-terminal human IgG1 Fc fragment. NKILVKQSPMLVAYDNAVNLSCKYSYNLF Sequence SREFRASLHKGLDSAVEVCVVYGNYSQQL QVYSKTGFNCDGKLGNESVTFYLQNLYVN QTDIYFCKIEVMYPPPYLDNEKSNGTIIH	Description	expressed on the cell surface as a glycosylated, disulfide-linked homodimer of 44 kDa. Members of the CD28 family share a number of common features. These receptors consist of paired V-set immunoglobulin superfamily (IgSF) domains attached to single transmembrane domains and cytoplasmic domains that contain critical signaling motifs. The CD28 and CTLA4 ligands, CD80 and CD86, consist of single V-set and C1-set IgSF domains. The interaction of these costimulatory receptors with ligands is mediated through the MYPPPY motif within the receptor V-set domains. CD28 is expressed constitutively on almost all human CD4 T cells and approximately 50% of CD8 T cells. CD28 costimulation has diverse effects on T cell function, including biochemical events at the immunological synapse, downstream phosphorylation and other post-translational modifications, transcriptional changes, and cytoskeletal remodeling. At the most basic level, CD28 signals increase a cell's glycolytic rate, allowing cells to generate the energy necessary for growth and proliferation. Recombinant Human CD28 Fc Chimera produced in HEK293 cells is a polypeptide chain containing 363 amino acids with the C-termimal human IgG1 Fc fragment. A fully biologically active molecule, rhCD28 has a molecular mass of 66-70 kDa analyzed by
Biological Activity Fc with a linear range of 0.01-0.5µg/mL when detected by Streptavidin-HRP second antibody. Asn ¹⁹ -Pro ¹⁵² (Accession #: P10747), expressed with a C-terminal human IgG1 Fc fragment. NKILVKQSPMLVAYDNAVNLSCKYSYNLF Sequence SREFRASLHKGLDSAVEVCVVYGNYSQQL QVYSKTGFNCDGKLGNESVTFYLQNLYVN QTDIYFCKIEVMYPPPYLDNEKSNGTIIH	Source	HEK293
fragment. NKILVKQSPMLVAYDNAVNLSCKYSYNLF SREFRASLHKGLDSAVEVCVVYGNYSQQL QVYSKTGFNCDGKLGNESVTFYLQNLYVN QTDIYFCKIEVMYPPPYLDNEKSNGTIIH	Biological Activity	Fc with a linear range of 0.01-0.5µg/mL when detected by Streptavidin-HRP second antibody.
	Sequence	fragment. NKILVKQSPMLVAYDNAVNLSCKYSYNLF SREFRASLHKGLDSAVEVCVVYGNYSQQL QVYSKTGFNCDGKLGNESVTFYLQNLYVN QTDIYFCKIEVMYPPPYLDNEKSNGTIIH

Properties

Measured Molecula Weight	r 66~70 kDa, observed by reducing SDS-PAGE.
Purity	> 97% as analyzed by reducing SDS-PAGE.
Formulation	Lyophilized from a 0.2 µm filtered solution in PBS.
Reconstitution	Reconstituted in ddH ₂ O or PBS at 100 µg/ml.
Endotoxin Level	< 0.2 EU/µg, determined by LAL method.
Storage	Lyophilized recombinant CD28 Fc Chimera, Human remains stable up to 6 months at lower than -70°C from date of receipt. Upon reconstitution, Human CD28 Fc Chimera should be stable up to 1 week at 4°C or up to 3 months at -20°C. For long term storage it is recommended that a carrier protein (example 0.1% BSA) be added. Avoid repeated freeze-thaw cycles.

India Contact:

Life Technologies (India) Pvt. Ltd.

306, Aggarwal City Mall, Opposite M2K Pitampura, Delhi – 110034 (INDIA). Mobile: +91-9810521400, Ph: +91-11-42208000 Email: customerservice@lifetechindia.com

Web: www.lifetechindia.com